Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter

Abstract

In human cells, cytosolic citrate is a chief precursor for the synthesis of fatty acids, triacylglycerols, cholesterol and low-density lipoprotein. Cytosolic citrate further regulates the energy balance of the cell by activating the fatty-acid-synthesis pathway while downregulating both the glycolysis and fatty-acid β-oxidation pathways1,2,3,4. The rate of fatty-acid synthesis in liver and adipose cells, the two main tissue types for such synthesis, correlates directly with the concentration of citrate in the cytosol2,3,4,5, with the cytosolic citrate concentration partially depending on direct import across the plasma membrane through the Na+-dependent citrate transporter (NaCT)6,7. Mutations of the homologous fly gene (Indy; I’m not dead yet) result in reduced fat storage through calorie restriction8. More recently, Nact (also known as Slc13a5)-knockout mice have been found to have increased hepatic mitochondrial biogenesis, higher lipid oxidation and energy expenditure, and reduced lipogenesis, which taken together protect the mice from obesity and insulin resistance9. To understand the transport mechanism of NaCT and INDY proteins, here we report the 3.2 Å crystal structure of a bacterial INDY homologue. One citrate molecule and one sodium ion are bound per protein, and their binding sites are defined by conserved amino acid motifs, forming the structural basis for understanding the specificity of the transporter. Comparison of the structures of the two symmetrical halves of the transporter suggests conformational changes that propel substrate translocation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Functional characterization and structure determination of the Na+-dependent dicarboxylate transporter VcINDY from Vibrio cholerae.
Figure 2: Structure of the VcINDY protomer.
Figure 3: Na + ion-binding sites in VcINDY.
Figure 4: Substrate-binding site in VcINDY.

Accession codes

Primary accessions

Protein Data Bank

Data deposits

The atomic coordinates and structure factors have been deposited in the Protein Data Bank under accession code 4F35.

References

  1. Spencer, A. F. & Lowenstein, J. M. Supply of precursors for synthesis of fatty acids. J. Biol. Chem. 237, 3640–3648 (1962)

    CAS  PubMed  Google Scholar 

  2. Bloch, K. & Vance, D. Control mechanisms in synthesis of saturated fatty-acids. Annu. Rev. Biochem. 46, 263–298 (1977)

    CAS  PubMed  Google Scholar 

  3. Ruderman, N. B., Saha, A. K., Vavvas, D. & Witters, L. A. Malonyl-CoA, fuel sensing, and insulin resistance. Am. J. Physiol. 276, E1–E18 (1999)

    CAS  PubMed  Google Scholar 

  4. Sul, H. S. & Smith, S. in Biochemistry of Lipids, Lipoproteins and Membranes 5th edn (eds Vance, D. E. & Vance, J. E. ) 155–190 (Elsevier, 2008)

    Google Scholar 

  5. Nishikori, K., Iritani, N. & Numa, S. Levels of acetyl coenzyme a carboxylase and its effectors in rat-liver after short-term fat-free refeeding. FEBS Lett. 32, 19–21 (1973)

    CAS  PubMed  Google Scholar 

  6. Inoue, K., Zhuang, L., Maddox, D. M., Smith, S. B. & Ganapathy, V. Structure, function, and expression pattern of a novel sodium-coupled citrate transporter (NaCT) cloned from mammalian brain. J. Biol. Chem. 277, 39469–39476 (2002)

    CAS  PubMed  Google Scholar 

  7. Gopal, E. et al. Expression and functional features of NaCT, a sodium-coupled citrate transporter, in human and rat livers and cell lines. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G402–G408 (2007)

    CAS  PubMed  Google Scholar 

  8. Rogina, B., Reenan, R. A., Nilsen, S. P. & Helfand, S. L. Extended life-span conferred by cotransporter gene mutations in Drosophila . Science 290, 2137–2140 (2000)

    ADS  CAS  PubMed  Google Scholar 

  9. Birkenfeld, A. L. et al. Deletion of the mammalian INDY homolog mimics aspects of dietary restriction and protects against adiposity and insulin resistance in mice. Cell Metab. 14, 184–195 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Markovich, D. & Murer, H. The SLC13 gene family of sodium sulphate/carboxylate cotransporters. Pflügers Arch. 447, 594–602 (2004)

    CAS  PubMed  Google Scholar 

  11. Pajor, A. M. Molecular properties of the SLC13 family of dicarboxylate and sulfate transporters. Pflügers Arch. 451, 597–605 (2006)

    CAS  PubMed  Google Scholar 

  12. Wright, S. H., Kippen, I., Klinenberg, J. R. & Wright, E. M. Specificity of the transport system for tricarboxylic acid cycle intermediates in renal brush borders. J. Membr. Biol. 57, 73–82 (1980)

    CAS  PubMed  Google Scholar 

  13. Wright, S. H., Hirayama, B., Kaunitz, J. D., Kippen, I. & Wright, E. M. Kinetics of sodium succinate cotransport across renal brush-border membranes. J. Biol. Chem. 258, 5456–5462 (1983)

    CAS  PubMed  Google Scholar 

  14. Griffith, D. A. & Pajor, A. M. Acidic residues involved in cation and substrate interactions in the Na+/dicarboxylate cotransporter, NaDC-1. Biochemistry 38, 7524–7531 (1999)

    CAS  PubMed  Google Scholar 

  15. Yao, X. & Pajor, A. M. The transport properties of the human renal Na+-dicarboxylate cotransporter under voltage-clamp conditions. Am. J. Physiol. Renal Physiol. 279, F54–F64 (2000)

    CAS  PubMed  Google Scholar 

  16. Pajor, A. M. Conformationally sensitive residues in transmembrane domain 9 of the Na+/dicarboxylate co-transporter. J. Biol. Chem. 276, 29961–29968 (2001)

    CAS  PubMed  Google Scholar 

  17. Joshi, A. D. & Pajor, A. M. Role of conserved prolines in the structure and function of the Na+/dicarboxylate cotransporter 1, NaDC1. Biochemistry 45, 4231–4239 (2006)

    CAS  PubMed  Google Scholar 

  18. Prakash, S., Cooper, G., Singhi, S. & Saier, M. H. The ion transporter superfamily. Biochim. Biophys. Acta. 1618, 79–92 (2003)

    CAS  PubMed  Google Scholar 

  19. Hall, J. A. & Pajor, A. M. Functional characterization of a Na+-coupled dicarboxylate carrier protein from Staphylococcus aureus . J. Bacteriol. 187, 5189–5194 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hall, J. A. & Pajor, A. M. Functional reconstitution of SdcS, a Na+-coupled dicarboxylate carrier protein from Staphylococcus aureus . J. Bacteriol. 189, 880–885 (2007)

    CAS  PubMed  Google Scholar 

  21. Youn, J. W., Jolkver, E., Kramer, R., Marin, K. & Wendisch, V. F. Identification and characterization of the dicarboxylate uptake system DccT in Corynebacterium glutamicum . J. Bacteriol. 190, 6458–6466 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Strickler, M. A., Hall, J. A., Gaiko, O. & Pajor, A. M. Functional characterization of a Na+-coupled dicarboxylate transporter from Bacillus licheniformis . Biochim. Biophys. Acta 1788, 2489–2496 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu, Q., Zhang, Z. & Hendrickson, W. A. Multi-crystal anomalous diffraction for low-resolution macromolecular phasing. Acta Crystallogr. D 67, 45–59 (2011)

    CAS  PubMed  Google Scholar 

  24. Zhang, F. F. & Pajor, A. M. Topology of the Na+/dicarboxylate cotransporter: the N-terminus and hydrophilic loop 4 are located intracellularly. Biochim. Biophys. Acta 1511, 80–89 (2001)

    CAS  PubMed  Google Scholar 

  25. Hunte, C. et al. Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435, 1197–1202 (2005)

    ADS  CAS  PubMed  Google Scholar 

  26. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437, 215–223 (2005)

    ADS  CAS  PubMed  Google Scholar 

  27. Faham, S. et al. The crystal structure of a sodium galactose transpoter reveals mechanic insights into Na+/sugar symport. Science 321, 810–814 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Johnson, Z. L., Cheong, C. G. & Lee, S. Y. Crystal structure of a concentrative nucleoside transporter from Vibrio cholerae at 2.4 Å. Nature 483, 489–493 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Inoue, K., Zhuang, L., Maddox, D. M., Smith, S. B. & Ganapathy, V. Human sodium-coupled citrate transporter, the orthologue of Drosophila Indy, as a novel target for lithium action. Biochem. J. 374, 21–26 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Pajor, A. M. & Sun, N. N. Single nucleotide polymorphisms in the human Na+-dicarboxylate cotransporter affect transport activity and protein expression. Am. J. Physiol. Renal Physiol. 299, F704–F711 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Auer, M. et al. High-yield expression and functional analysis of Escherichia coli glycerol-3-phosphate transporter. Biochemistry 40, 6628–6635 (2001)

    CAS  PubMed  Google Scholar 

  32. Li, X. D. et al. Monomeric state and ligand binding of recombinant GABA transporter from Escherichia coli . FEBS Lett. 494, 165–169 (2001)

    ADS  CAS  PubMed  Google Scholar 

  33. Wang, D. N. et al. Practical aspects of overexpressing bacterial secondary membrane transporters for structural studies. Biochim. Biophys. Acta 1610, 23–36 (2003)

    CAS  PubMed  Google Scholar 

  34. Love, J. et al. The New York Consortium on Membrane Protein Structure (NYCOMPS): a high-throughput platform for structural genomics of integral membrane proteins. J. Struct. Funct. Genomics 11, 191–199 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Safferling, M. et al. The TetL tetracycline efflux protein from Bacillus subtilis is a dimer in the membrane and in detergent solution. Biochemistry 42, 13969–13976 (2003)

    CAS  PubMed  Google Scholar 

  36. Boulter, J. M. & Wang, D. N. Purification and characterization of human erythrocyte glucose transporter in decylmaltoside detergent solution. Protein Expr. Purif. 22, 337–348 (2001)

    CAS  PubMed  Google Scholar 

  37. Hirato, T., Shinagawa, M., Ishiguro, N. & Sato, G. Polypeptide involved in the Escherichia coli plasmid-mediated citrate transport system. J. Bacteriol. 160, 421–426 (1984)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Law, C. J., Yang, Q., Soudant, C., Maloney, P. C. & Wang, D. N. Kinetic evidence is consistent with the rocker-switch mechanism of membrane transport by GlpT. Biochemistry 46, 12190–12197 (2007)

    CAS  PubMed  Google Scholar 

  39. Law, C. J. et al. Salt-bridge dynamics control substrate-induced conformational change in the membrane transporter GlpT. J. Mol. Biol. 378, 828–839 (2008)

    PubMed  Google Scholar 

  40. Liu, Q. et al. Structures from anomalous diffraction of native biological macromolecules. Science 336, 1033–1037 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kabsch, W. Xds. Acta Crystallogr. D 66, 125–132 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Evans, P. R. An introduction to data reduction: space-group determination, scaling and intensity statistics. Acta Crystallogr. D 67, 282–292 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Sheldrick, G. M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D 66, 479–485 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Read, R. J. & McCoy, A. J. Using SAD data in Phaser . Acta Crystallogr. D 67, 338–344 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Cowtan, K. D. & Zhang, K. Y. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999)

    CAS  PubMed  Google Scholar 

  46. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004)

    PubMed  Google Scholar 

  47. Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D 66, 213–221 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D 67, 235–242 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. DeLano, W. L. The PyMOL User’s Manual (DeLano Scientific, 2002)

Download references

Acknowledgements

We are grateful to M. Punta and B. Rost for bioinformatics analysis of membrane transporters, to J. Love and B. Kloss for assistance in cloning, and to the staff at beamlines X4, X25 and X29 of the National Synchrotron Light Source in the Brookhaven National Laboratory and at the 23ID at the Advanced Photon Source at the Argonne National Laboratory for assistance in X-ray diffraction experiments, and to J. Llodra for help with artwork. We thank B. K. Czyzewski, W. A. Hendrickson, N. K. Karpowich, F. Mancia and J. J. Marden for discussions and for participating in synchrotron trips. This work was financially supported by National Institutes of Health grants U54-GM075026, R01-DK073973, R01-GM093825 and R01-MH083840.

Author information

Authors and Affiliations

Authors

Contributions

R.M. and D.-N.W. designed the project. R.M. did all the experiments, with assistance from G.G.G. in diffraction data processing, phasing and structure refinement, and from Q.L. in phasing. R.M. and D.-N.W. wrote the manuscript.

Corresponding author

Correspondence to Da-Neng Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains a Supplementary Discussion, Supplementary References, Supplementary Tables 1-3 and Supplementary Figures 1-17. (PDF 11214 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mancusso, R., Gregorio, G., Liu, Q. et al. Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature 491, 622–626 (2012). https://doi.org/10.1038/nature11542

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11542

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing