Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Independent evolution of striated muscles in cnidarians and bilaterians

Abstract

Striated muscles are present in bilaterian animals (for example, vertebrates, insects and annelids) and some non-bilaterian eumetazoans (that is, cnidarians and ctenophores). The considerable ultrastructural similarity of striated muscles between these animal groups is thought to reflect a common evolutionary origin1,2. Here we show that a muscle protein core set, including a type II myosin heavy chain (MyHC) motor protein characteristic of striated muscles in vertebrates, was already present in unicellular organisms before the origin of multicellular animals. Furthermore, ‘striated muscle’ and ‘non-musclemyhc orthologues are expressed differentially in two sponges, compatible with a functional diversification before the origin of true muscles and the subsequent use of striated muscle MyHC in fast-contracting smooth and striated muscle. Cnidarians and ctenophores possess striated muscle myhc orthologues but lack crucial components of bilaterian striated muscles, such as genes that code for titin and the troponin complex, suggesting the convergent evolution of striated muscles. Consistently, jellyfish orthologues of a shared set of bilaterian Z-disc proteins are not associated with striated muscles, but are instead expressed elsewhere or ubiquitously. The independent evolution of eumetazoan striated muscles through the addition of new proteins to a pre-existing, ancestral contractile apparatus may serve as a model for the evolution of complex animal cell types.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Complex phylogenomic distribution of contractile machinery and Z-disc interactome components.
Figure 2: Ancient myhc gene duplication predated animal radiation.
Figure 3: Expression of ST myhc in a demosponge and in anthozoan and hydrozoan cnidarians.
Figure 4: Absence of Clytia hemisphaerica muscleLIM and ldb3 expression in striated muscles.

Similar content being viewed by others

References

  1. Seipel, K. & Schmid, V. Evolution of striated muscle: jellyfish and the origin of triploblasty. Dev. Biol. 282, 14–26 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. Schuchert, P., Reber-Müller, S. & Schmid, V. Life stage specific expression of a myosin heavy chain in the hydrozoan Podocoryne carnea . Differentiation 54, 11–18 (1993)

    Article  CAS  PubMed  Google Scholar 

  3. Chapman, D. M. in Coelenterate Biology (eds Muscatine, L. & Lenhoff, H. M. ) Ch. 1 1–93 (Academic, 1974)

    Book  Google Scholar 

  4. Burton, P. M. Inisghts from diploblasts; the evolution of mesoderm and muscle. J. Exp. Zool. 308B, 1–10 (2007)

    Article  Google Scholar 

  5. Schmidt-Rhaesa, A. The Evolution of Organ Systems 1st edn (Oxford Univ. Press, 2007)

    Book  Google Scholar 

  6. Mackie, G. O., Mills, C. E. & Singla, C. L. Structure and function of the prehensile tentilla of Euplokamis (Ctenophora, Cydippida). Zoomorphology 107, 319–337 (1988)

    Article  Google Scholar 

  7. Boelsterli, U. An electron microscopic study of early developmental stages, myogenesis, oogenesis, and cnidogenesis in the anthomedusa, Podocoryne carnea M. Sars. J. Morphol. 154, 259–289 (1977)

    Article  CAS  PubMed  Google Scholar 

  8. Squire, J. M., Al-Khayat, H. A., Knupp, C. & Luther, P. K. Molecular architecture in muscle contractile assemblies. Adv. Protein Chem. 71, 17–87 (2005)

    Article  CAS  PubMed  Google Scholar 

  9. Hooper, S. L., Hobbs, K. H. & Thuma, J. B. Invertebrate muscles: thin and thick filament structure; molecular basis of contraction and its regulation, catch and asynchronous muscle. Prog. Neurobiol. 86, 72–127 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kamm, K. E. & Stull, J. T. Dedicated myosin light chain kinases with diverse cellular functions. J. Biol. Chem. 276, 4527–4530 (2001)

    Article  CAS  PubMed  Google Scholar 

  11. Korn, E. D. Coevolution of head, neck, and tail domains of myosin heavy chains. Proc. Natl Acad. Sci. USA 97, 12559–12564 (2000)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oota, S. & Saitou, N. Phylogenetic relationship of muscle tissues deduced from superimposition of gene trees. Mol. Biol. Evol. 16, 856–867 (1999)

    Article  CAS  PubMed  Google Scholar 

  13. Goodson, H. V. & Spudich, J. A. Molecular evolution of the myosin family: relationships derived from comparisons of amino acid sequences. Proc. Natl Acad. Sci. USA 90, 659–663 (1993)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vicente-Manzanares, M., Ma, X., Adelstein, R. S. & Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nature Rev. Mol. Cell Biol. 10, 778–790 (2009)

    Article  CAS  Google Scholar 

  15. Hooper, S. L. & Thuma, J. B. Invertebrate muscles: muscle specific genes and proteins. Physiol. Rev. 85, 1001–1060 (2005)

    Article  CAS  PubMed  Google Scholar 

  16. Nickel, M., Scheer, C., Hammel, J. U., Herzen, J. & Beckmann, F. The contractile sponge epithelium sensu lato–body contraction of the demosponge Tethya wilhelma is mediated by the pinacoderm. J. Exp. Biol. 214, 1692–1698 (2011)

    Article  PubMed  Google Scholar 

  17. Hammel, J. U. Zur Funktion des Wasserleitungssystems und der Entwicklung von Knospen in Schwämmen. Morphologische Grundlagen einer reversen Genetik. PhD thesis, Friedrich Schiller Univ. Jena. (2010)

  18. Adamska, M. et al. Structure and expression of conserved Wnt pathway components in the demosponge Amphimedon queenslandica . Evol. Dev. 12, 494–518 (2010)

    Article  CAS  PubMed  Google Scholar 

  19. Renfer, E., Amon-Hassenzahl, A., Steinmetz, P. R. & Technau, U. A muscle-specific transgenic reporter line of the sea anemone, Nematostella vectensis . Proc. Natl Acad. Sci. USA 107, 104–108 (2010)

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Rui, Y., Bai, J. & Perrimon, N. Sarcomere formation occurs by the assembly of multiple latent protein complexes. PLoS Genet. 6, e1001208 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  21. Sanger, J. M. & Sanger, J. W. The dynamic Z bands of striated muscle cells. Sci. Signal. 1, pe37 (2008)

    Article  PubMed  Google Scholar 

  22. Clark, K. A., McElhinny, A. S., Beckerle, M. C. & Gregorio, C. C. Striated muscle cytoarchitecture: an intricate web of form and function. Annu. Rev. Cell Dev. Biol. 18, 637–706 (2002)

    Article  CAS  PubMed  Google Scholar 

  23. Frank, D., Kuhn, C., Katus, H. A. & Frey, N. The sarcomeric Z-disc: a nodal point in signalling and disease. J. Mol. Med. 84, 446–468 (2006)

    Article  CAS  PubMed  Google Scholar 

  24. Martindale, M. Q., Pang, K. & Finnerty, J. R. Investigating the origins of triploblasty: ‘mesodermal’ gene expression in a diploblastic animal, the sea anemone Nematostella vectensis (phylum Cnidaria; class Anthozoa). Development 131, 2463–2474 (2004)

    Article  CAS  PubMed  Google Scholar 

  25. Ayme-Southgate, A. J., Southgate, R. J., Philipp, R. A., Sotka, E. E. & Kramp, C. The myofibrillar protein, projectin, is highly conserved across insect evolution except for its PEVK domain. J. Mol. Evol. 67, 653–669 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kenny, P. A., Liston, E. M. & Higgins, D. G. Molecular evolution of immunoglobulin and fibronectin domains in titin and related muscle proteins. Gene 232, 11–23 (1999)

    Article  CAS  PubMed  Google Scholar 

  27. Sutter, S. B., Raeker, M. O., Borisov, A. B. & Russell, M. W. Orthologous relationship of obscurin and Unc-89: phylogeny of a novel family of tandem myosin light chain kinases. Dev. Genes Evol. 214, 352–359 (2004)

    Article  CAS  PubMed  Google Scholar 

  28. Craig, R. & Woodhead, J. L. Structure and function of myosin filaments. Curr. Opin. Struct. Biol. 16, 204–212 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. Torruella, G. et al. Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. Mol. Biol. Evol. 29, 531–544 (2012)

    Article  CAS  PubMed  Google Scholar 

  30. Philippe, H. et al. Phylogenomics revives traditional views on deep animal relationships. Curr. Biol. 19, 706–712 (2009)

    Article  CAS  PubMed  Google Scholar 

  31. Fritzenwanker, J. H. & Technau, U. Induction of gametogenesis in the basal cnidarian Nematostella vectensis . Dev. Genes Evol. 212, 99–103 (2002)

    Article  PubMed  Google Scholar 

  32. Chevalier, S., Martin, A., Leclere, L., Amiel, A. & Houliston, E. Polarised expression of FoxB and FoxQ2 genes during development of the hydrozoan Clytia hemisphaerica . Dev. Genes Evol. 216, 709–720 (2006)

    Article  CAS  PubMed  Google Scholar 

  33. Leys, S. P. & Degnan, B. M. Cytological basis of photoresponsive behavior in a sponge larva. Biol. Bull. 201, 323–338 (2001)

    Article  CAS  PubMed  Google Scholar 

  34. Sarà, M., Sarà, A., Nickel, M. & Brümmer, F. Three new species of Tethya (Porifera: Demospongiae) from German aquaria Stuttg. Beitr. Naturkd. A. 631, 1–15 (2001)

    Google Scholar 

  35. Nickel, M. Kinetics and rhythm of body contractions in the sponge Tethya wilhelma (Porifera: Demospongiae). J. Exp. Biol. 207, 4515–4524 (2004)

    Article  PubMed  Google Scholar 

  36. Putnam, N. H. et al. The amphioxus genome and the evolution of the chordate karyotype. Nature 453, 1064–1071 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Putnam, N. H. et al. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317, 86–94 (2007)

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Chapman, J. A. et al. The dynamic genome of Hydra . Nature 464, 592–596 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ryan, J. F. et al. The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the ParaHoxozoa. Evodevo 1, 9 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  40. Srivastava, M. et al. The Trichoplax genome and the nature of placozoans. Nature 454, 955–960 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. King, N. et al. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451, 783–788 (2008)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Ruiz-Trillo, I. et al. The origins of multicellularity: a multi-taxon genome initiative. Trends Genet. 23, 113–118 (2007)

    Article  CAS  PubMed  Google Scholar 

  44. Merchant, S. S. et al. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318, 245–250 (2007)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Banks, J. A. et al. The Selaginella genome identifies genetic changes associated with the evolution of vascular plants. Science 332, 960–963 (2011)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Eichinger, L. et al. The genome of the social amoeba Dictyostelium discoideum . Nature 435, 43–57 (2005)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fritz-Laylin, L. K. et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140, 631–642 (2010)

    Article  CAS  PubMed  Google Scholar 

  48. Fernandez-Fueyo, E. et al. Comparative genomics of Ceriporiopsis subvermispora and Phanerochaete chrysosporium provide insight into selective ligninolysis. Proc. Natl Acad. Sci. USA 109, 5458–5463 (2012)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wood, V. et al. The genome sequence of Schizosaccharomyces pombe . Nature 415, 871–880 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  50. Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997)

    Article  CAS  PubMed  Google Scholar 

  51. Shinzato, C. et al. Using the Acropora digitifera genome to understand coral responses to environmental change. Nature 476, 320–323 (2011)

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Hunter, S. et al. InterPro: the integrative protein signature database. Nucleic Acids Res. 37, D211–D215 (2009)

    Article  CAS  PubMed  Google Scholar 

  53. Finn, R. D. et al. The Pfam protein families database. Nucleic Acids Res. 38, D211–D222 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lupas, A., Van Dyke, M. & Stock, J. Predicting coiled coils from protein sequences. Science 252, 1162–1164 (1991)

    Article  ADS  CAS  PubMed  Google Scholar 

  55. Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000)

    Article  CAS  PubMed  Google Scholar 

  57. Abascal, F., Zardoya, R. & Posada, D. ProtTest: selection of best-fit models of protein evolution. Bioinformatics 21, 2104–2105 (2005)

    Article  CAS  PubMed  Google Scholar 

  58. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882 (1997)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010)

    Article  CAS  PubMed  Google Scholar 

  60. Altekar, G., Dwarkadas, S., Huelsenbeck, J. P. & Ronquist, F. Parallel Metropolis-coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20, 407–415 (2004)

    Article  CAS  PubMed  Google Scholar 

  61. Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)

    Article  CAS  PubMed  Google Scholar 

  62. Genikhovich, G. & Technau, U. In situ hybridization of starlet sea anemone (Nematostella vectensis) embryos, larvae, and polyps. Cold Spring Harb. Protoc. 2009, pdb.prot5282 (2009)

    PubMed  Google Scholar 

  63. Larroux, C. et al. Developmental expression of transcription factor genes in a demosponge: insights into the origin of metazoan multicellularity. Evol. Dev. 8, 150–173 (2006)

    Article  CAS  PubMed  Google Scholar 

  64. Larroux, C. et al. Whole-mount In situ hybridization in Amphimedon . Cold Spring Harb. Protoc. 2008, pdb.prot5096 (2008)

    Article  Google Scholar 

  65. Hammel, J. U., Herzen, J., Beckmann, F. & Nickel, M. Sponge budding is a spatiotemporal morphological patterning process: insights from synchrotron radiation-based x-ray microtomography into the asexual reproduction of Tethya wilhelma . Front. Zool. 6, 19 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  66. Weissenfels, N. Scanning electron microscope histology of spongy Ephydatia fluviatilis . Microsc. Acta 85, 345–350 (1982)

    Google Scholar 

  67. Nickel, M., Donath, T., Schweikert, M. & Beckmann, F. Functional morphology of Tethya species (Porifera): 1. Quantitative 3D-analysis of Tethya wilhelma by synchrotron radiation based X-ray microtomography. Zoomorphology 125, 209–223 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

For access and use of publicly available, unpublished genome sequences, we thank the Origins of Multicellularity Sequencing Project, Broad Institute of Harvard and MIT (http://www.broadinstitute.org/), the Joint Genome Institute as well as A. Baxevanis and J. Ryan. We thank M. Adamska for providing Amphimedon total RNA, M. Kube for T. wilhelma transcriptome 454 sequencing, D. Fredman and T. Momose for the C. hemisphaerica and T. Nosenko for T. wilhelma transcriptome assemblies, H. Schmidt for advice on phylogeny, B. Weiss for technical assistance with T. wilhelma sections, Genoscope for C. hemisphaerica sequencing projects and the members of the Technau laboratory for discussion. The research was funded by fellowships of the Austrian Science Fund P21108-B17 and the ITN EVONET (project 215781) to U.T., the Australian Research Council to B.M.D., the Alexander von Humboldt Foundation to C.L., ANR grant DiploDevo to E.H. and the German Science Foundation through the Priority Program 1174 Deep Metazoan Phylogeny (project Wo896/6) to G.W.

Author information

Authors and Affiliations

Authors

Contributions

P.R.H.S. and U.T. designed the study, analysed data and wrote the paper. P.R.H.S. performed the bioinformatic and phylogenetic analyses, most N. vectensis experiments and cloned two A. queenslandica myhc genes. J.E.M.K. performed and analysed all C. hemisphaerica experiments. C.L. cloned all T. wilhelma genes and performed all in situ hybridization experiments on T. wilhelma and A. queenslandica. J.U.H. and M.N. performed scanning electron microscopy and sectioning of T. wilhelma animals. A.A.-H. cloned the N. vectensis ST myhc gene and performed in situ hybridization and sectioning experiments of adult N. vectensis. G.W. and E.H. provided unpublished expressed sequence tag sequences and E.H. helped perform C. hemisphaerica experiments. M.N., C.L., G.W. and J.U.H. analysed the T. wilhelma data and C.L. and B.M.D. analysed the A. queenslandica data.

Corresponding author

Correspondence to Ulrich Technau.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-11 comprising: the evolutionary origin of muscle components (Supplementary Figure 1); supporting molecular phylogenies (Supplementary Figures 2 and 7) and protein domain analyses of muscle components (Supplementary Figure 8); SEM pictures of T. wilhelma apopyle cells (Supplementary Figure 4) and additional myhc (Supplementary Figures 3, 5, 6) and z-disc gene orthologs expression data (Supplementary Figures 9-11). Supplementary References are also included. (PDF 16393 kb)

Supplementary Table 1

This Excel file contains accession numbers, gene model names, fully spelled species names and the sequences of DNA oligonucleotides used to clone genes. (XLS 90 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinmetz, P., Kraus, J., Larroux, C. et al. Independent evolution of striated muscles in cnidarians and bilaterians. Nature 487, 231–234 (2012). https://doi.org/10.1038/nature11180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11180

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing