Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Embryonic stem cell potency fluctuates with endogenous retrovirus activity

Abstract

Embryonic stem (ES) cells are derived from blastocyst-stage embryos and are thought to be functionally equivalent to the inner cell mass, which lacks the ability to produce all extraembryonic tissues. Here we identify a rare transient cell population within mouse ES and induced pluripotent stem (iPS) cell cultures that expresses high levels of transcripts found in two-cell (2C) embryos in which the blastomeres are totipotent. We genetically tagged these 2C-like ES cells and show that they lack the inner cell mass pluripotency proteins Oct4 (also known as Pou5f1), Sox2 and Nanog, and have acquired the ability to contribute to both embryonic and extraembryonic tissues. We show that nearly all ES cells cycle in and out of this privileged state, which is partially controlled by histone-modifying enzymes. Transcriptome sequencing and bioinformatic analyses showed that many 2C transcripts are initiated from long terminal repeats derived from endogenous retroviruses, suggesting this foreign sequence has helped to drive cell-fate regulation in placental mammals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The MuERV-L retrovirus and a reporter driven by its LTR marks the 2C state.
Figure 2: ES cells enter the 2C state regularly, but remain in the state transiently owing to cell intrinsic and extrinsic factors.
Figure 3: The 2C state is associated with an active epigenetic signature and is antagonized by repressive chromatin-modifying enzymes.
Figure 4: Activation of the 2C state is associated with expanded potency in chimaeric embryos towards extraembryonic lineages.
Figure 5: Model of the role of the MuERV-L-LTR-linked 2C gene network in regulating embryonic potency.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Microarray and RNA-seq files have been submitted to the NCBI Gene Expression Omnibus database under accession GSE33923.

References

  1. Tarkowski, A. K. Experiments on the development of isolated blastomers of mouse eggs. Nature 184, 1286–1287 (1959)

    Article  ADS  CAS  Google Scholar 

  2. Papaioannou, V. E., Mkandawire, J. & Biggers, J. D. Development and phenotypic variability of genetically identical half mouse embryos. Development 106, 817–827 (1989)

    CAS  PubMed  Google Scholar 

  3. Cockburn, K. & Rossant, J. Making the blastocyst: lessons from the mouse. J. Clin. Invest. 120, 995–1003 (2010)

    Article  CAS  Google Scholar 

  4. Latham, K. E. & Schultz, R. M. Embryonic genome activation. Front. Biosci. 6, d748–d759 (2001)

    Article  CAS  Google Scholar 

  5. Schultz, R. M. The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum. Reprod. Update 8, 323–331 (2002)

    Article  CAS  Google Scholar 

  6. Kan?ka, J. Gene expression and chromatin structure in the pre-implantation embryo. Theriogenology 59, 3–19 (2003)

    Article  CAS  Google Scholar 

  7. Evans, M. J. & Kaufman, M. H. Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154–156 (1981)

    Article  ADS  CAS  Google Scholar 

  8. Martin, G. R. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl Acad. Sci. USA 78, 7634–7638 (1981)

    Article  ADS  CAS  Google Scholar 

  9. Beddington, R. S. & Robertson, E. J. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105, 733–737 (1989)

    CAS  Google Scholar 

  10. Niakan, K. K. et al. Sox17 promotes differentiation in mouse embryonic stem cells by directly regulating extraembryonic gene expression and indirectly antagonizing self-renewal. Genes Dev. 24, 312–326 (2010)

    Article  CAS  Google Scholar 

  11. Hayashi, K., Lopes, S. M., Tang, F. & Surani, M. A. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3, 391–401 (2008)

    Article  CAS  Google Scholar 

  12. Singh, A. M., Hamazaki, T., Hankowski, K. E. & Terada, N. A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 25, 2534–2542 (2007)

    Article  CAS  Google Scholar 

  13. Chambers, I. et al. Nanog safeguards pluripotency and mediates germline development. Nature 450, 1230–1234 (2007)

    Article  ADS  CAS  Google Scholar 

  14. Zalzman, M. et al. Zscan4 regulates telomere elongation and genomic stability in ES cells. Nature 464, 858–863 (2010)

    Article  ADS  CAS  Google Scholar 

  15. Peaston, A. E. et al. Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev. Cell 7, 597–606 (2004)

    Article  CAS  Google Scholar 

  16. Evsikov, A. V. et al. Systems biology of the 2-cell mouse embryo. Cytogenet. Genome Res. 105, 240–250 (2004)

    Article  CAS  Google Scholar 

  17. Kigami, D., Minami, N., Takayama, H. & Imai, H. MuERV-L is one of the earliest transcribed genes in mouse one-cell embryos. Biol. Reprod. 68, 651–654 (2003)

    Article  CAS  Google Scholar 

  18. Svoboda, P. et al. RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev. Biol. 269, 276–285 (2004)

    Article  CAS  Google Scholar 

  19. Ribet, D. et al. Murine endogenous retrovirus MuERV-L is the progenitor of the “orphan” epsilon viruslike particles of the early mouse embryo. J. Virol. 82, 1622–1625 (2008)

    Article  CAS  Google Scholar 

  20. Soudais, C. et al. Targeted mutagenesis of the transcription factor GATA-4 gene in mouse embryonic stem cells disrupts visceral endoderm differentiation in vitro . Development 121, 3877–3888 (1995)

    CAS  PubMed  Google Scholar 

  21. Yagi, R. et al. Transcription factor TEAD4 specifies the trophectoderm lineage at the beginning of mammalian development. Development 134, 3827–3836 (2007)

    Article  CAS  Google Scholar 

  22. Nishioka, N. et al. Tead4 is required for specification of trophectoderm in pre-implantation mouse embryos. Mech. Dev. 125, 270–283 (2008)

    Article  CAS  Google Scholar 

  23. Choo, K. B., Chen, H. H., Cheng, W. T., Chang, H. S. & Wang, M. In silico mining of EST databases for novel pre-implantation embryo-specific zinc finger protein genes. Mol. Reprod. Dev. 59, 249–255 (2001)

    Article  CAS  Google Scholar 

  24. Huang, C. J., Chen, C. Y., Chen, H. H., Tsai, S. F. & Choo, K. B. TDPOZ, a family of bipartite animal and plant proteins that contain the TRAF (TD) and POZ/BTB domains. Gene 324, 117–127 (2004)

    Article  CAS  Google Scholar 

  25. Zhang, W. et al. Zfp206 regulates ES cell gene expression and differentiation. Nucleic Acids Res. 34, 4780–4790 (2006)

    Article  CAS  Google Scholar 

  26. Ying, Q. L. et al. The ground state of embryonic stem cell self-renewal. Nature 453, 519–523 (2008)

    Article  ADS  CAS  Google Scholar 

  27. Ma, J., Svoboda, P., Schultz, R. M. & Stein, P. Regulation of zygotic gene activation in the preimplantation mouse embryo: global activation and repression of gene expression. Biol. Reprod. 64, 1713–1721 (2001)

    Article  CAS  Google Scholar 

  28. Wiekowski, M., Miranda, M., Nothias, J. Y. & DePamphilis, M. L. Changes in histone synthesis and modification at the beginning of mouse development correlate with the establishment of chromatin mediated repression of transcription. J. Cell Sci. 110, 1147–1158 (1997)

    CAS  PubMed  Google Scholar 

  29. Macfarlan, T. S. et al. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25, 594–607 (2011)

    Article  CAS  Google Scholar 

  30. Rowe, H. M. et al. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463, 237–240 (2010)

    Article  ADS  CAS  Google Scholar 

  31. Yokochi, T. et al. G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc. Natl Acad. Sci. USA 106, 19363–19368 (2009)

    Article  ADS  CAS  Google Scholar 

  32. Suzuki, T., Minami, N., Kono, T. & Imai, H. Zygotically activated genes are suppressed in mouse nuclear transferred embryos. Cloning Stem Cells 8, 295–304 (2006)

    Article  CAS  Google Scholar 

  33. Shao, G. B. et al. Effect of trychostatin A treatment on gene expression in cloned mouse embryos. Theriogenology 71, 1245–1252 (2009)

    Article  CAS  Google Scholar 

  34. Li, W. et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27, 2992–3000 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Hirata, T. et al. Zscan4 transiently reactivates early embryonic genes during the generation of induced pluripotent stem cells. Sci. Rep. 2, 208 (2012)

    Article  Google Scholar 

  36. Feschotte, C. Transposable elements and the evolution of regulatory networks. Nature Rev. Genet. 9, 397–405 (2008)

    Article  CAS  Google Scholar 

  37. Kunarso, G. et al. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nature Genet. 42, 631–634 (2010)

    Article  CAS  Google Scholar 

  38. Lynch, V. J., Leclerc, R. D., May, G. & Wagner, G. P. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nature Genet. 43, 1154–1159 (2011)

    Article  CAS  Google Scholar 

  39. Dupressoir, A. et al. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc. Natl Acad. Sci. USA 106, 12127–12132 (2009)

    Article  ADS  CAS  Google Scholar 

  40. Bénit, L., Lallemand, J. B., Casella, J. F., Philippe, H. & Heidmann, T. ERV-L elements: a family of endogenous retrovirus-like elements active throughout the evolution of mammals. J. Virol. 73, 3301–3308 (1999)

    PubMed  PubMed Central  Google Scholar 

  41. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010)

    Article  CAS  Google Scholar 

  42. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols 4, 44–57 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank members of the Pfaff laboratory for discussion; S. Andrews, D. Chambers, Y. Dayn, T.-C. Sung, J. Fitzpatrick, M. Joens, Y. Sigal, D. Gibbs and L. Ouyang for technical assistance, Y. Shinkai and D. Gilbert for the G9a mutant ES cells, and T. Heidmann for MuERV-L-Gag antibodies. This research was supported by the National Institute of Neurological Disorders and Stroke (R37NS037116) and the Marshall Heritage Foundation. T.S.M. and W.D.G. were supported by the California Institute for Regenerative Medicine and S.L.P. is an investigator of the Howard Hughes Medical Institute and Benjamin H. Lewis Chair in Neurobiology.

Author information

Authors and Affiliations

Authors

Contributions

T.S.M. designed and performed all experiments with assistance from W.D.G., S.D., D.B. and K.L. under the supervision of S.L.P. D.T. generated Kap1 mutant ES cells and H.M.R. and D.T. provided mRNA-seq data from these cells. A.F. and O.S. generated and provided iPS cell lines and lentivirus constructs. T.S.M., W.D.G. and S.L.P. wrote the manuscript.

Corresponding author

Correspondence to Samuel L. Pfaff.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-11 and legends for Supplementary Movies 1-3. (PDF 4173 kb)

Supplementary Tables

This zipped file contains Supplementary Tables 1-7. (ZIP 1714 kb)

Supplementary Movie 1

The 2C::tomato reporter is restricted to the zygote and 2C/4C stage - see Supplementary Information fie for full legend. (MOV 543 kb)

Supplementary Movie 2

2C::tomato is transiently expressed in ES cultures - see Supplementary Information fie for full legend. (MOV 2199 kb)

Supplementary Movie 3

Entrance into the 2C::tomato (+) state is more rapid in Kdm1a mutant ES cells - see Supplementary Information fie for full legend. (MOV 2201 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Macfarlan, T., Gifford, W., Driscoll, S. et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487, 57–63 (2012). https://doi.org/10.1038/nature11244

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11244

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing