Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes

Abstract

Acanthodians, an exclusively Palaeozoic group of fish, are central to a renewed debate on the origin of modern gnathostomes: jawed vertebrates comprising Chondrichthyes (sharks, rays and ratfish) and Osteichthyes (bony fishes and tetrapods)1,2,3,4,5,6. Acanthodian internal anatomy is primarily understood from Acanthodes bronni2,7,8,9,10 because it remains the only example preserved in substantial detail, central to which is an ostensibly osteichthyan braincase1,2,7. For this reason, Acanthodes has become an indispensible component in early gnathostome phylogenies1,11,12,13,14,15,16,17. Here we present a new description of the Acanthodes braincase, yielding new details of external and internal morphology, notably the regions surrounding and within the ear capsule and neurocranial roof. These data contribute to a new reconstruction that, unexpectedly, resembles early chondrichthyan crania. Principal coordinates analysis of a character–taxon matrix including these new data confirms this impression: Acanthodes is quantifiably closer to chondrichthyans than to osteichthyans. However, phylogenetic analysis places Acanthodes on the osteichthyan stem, as part of a well-resolved tree that also recovers acanthodians as stem chondrichthyans and stem gnathostomes. As such, perceived chondrichthyan features of the Acanthodes cranium represent shared primitive conditions for crown group gnathostomes. Moreover, this increasingly detailed picture of early gnathostome evolution highlights ongoing and profound anatomical reorganization of vertebrate crania after the origin of jaws but before the divergence of living clades.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Acanthodes bronni cranial reconstruction.
Figure 2: Acanthodes braincase: details of braincase morphology.
Figure 3: PCO of early gnathostome character data.
Figure 4: Results of phylogenetic analysis, and early gnathostome braincases preceding conditions in modern jawed vertebrates.

References

  1. Brazeau, M. The braincase and jaws of a Devonian ‘acanthodian’ and modern gnathostome origins. Nature 457, 305–308 (2009)

    Article  ADS  CAS  Google Scholar 

  2. Janvier, P. Early Vertebrates (Oxford Univ. Press, 1996)

    Google Scholar 

  3. Hanke, G. F. & Wilson, M. V. H. in Morphology, Phylogeny and Paleobiogeography of Fossil Fishes (eds Elliot, D. K., Maisey, J. G., Yu, X. & Miao, D. ) 159–182 (Freidrich Pfeil, 2010)

    Google Scholar 

  4. Johanson, Z. Vascularization of the osteostracan and antiarch (Placodermi) pectoral fin: similarities, and implications for placoderm relationships. Lethaia 35, 169–186 (2002)

    Article  Google Scholar 

  5. Gai, Z., Donoghue, P. C. J., Zhu, M., Janvier, P. & Stampanoni, M. Fossil jawless fish from China foreshadows early jawed vertebrate anatomy. Nature 476, 324–327 (2011)

    Article  ADS  CAS  Google Scholar 

  6. Anderson, P. S. L., Friedman, M., Brazeau, M. D. & Rayfield, E. J. Initial radiation of jaws demonstrated stability despite faunal and environmental change. Nature 476, 206–209 (2011)

    Article  ADS  CAS  Google Scholar 

  7. Miles, R. S. in Interrelationships of Fishes (eds Greenwood, P. H., Miles, R. S. & Patterson, C. ) 63–103 (Academic, 1973)

    Google Scholar 

  8. Nelson, G. J. Gill arches and the phylogeny of fishes, with notes on the classification of vertebrates. Bull. Am. Mus. Nat. Hist. 141, 475–552 (1969)

    Google Scholar 

  9. Jarvik, E. Basic Structure and Evolution of Vertebrates (Academic, 1980)

    Google Scholar 

  10. Miles, R. S. Articulated acanthodian fishes from the Old Red Sandstone of England, with a review of the structure and evolution of the acanthodian shoulder- girdle. Bull. Br. Mus. Nat. Hist. (Geol.) 24, 111–213 (1973)

    Google Scholar 

  11. Zhu, M. et al. The oldest articulated osteichthyan reveals a mosaic of gnathostome characters. Nature 458, 469–474 (2009)

    Article  ADS  CAS  Google Scholar 

  12. Basden, A. M., Young, G. C., Coates, M. I. & Ritchie, A. The most primitive osteichthyan braincase? Nature 403, 185–188 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Maisey, J. G. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E. ) 263–288 (Taylor and Francis, 2001)

    Google Scholar 

  14. Miller, R. F., Cloutier, R. & Turner, S. The oldest articulated chondrichthyan from the Early Devonian period. Nature 425, 501–504 (2003)

    Article  ADS  CAS  Google Scholar 

  15. Zhu, M., Yu, X. & Janvier, P. A primitive fossil fish sheds light on the origin of bony fishes. Nature 397, 607–610 (1999)

    Article  ADS  CAS  Google Scholar 

  16. Coates, M. I. & Sequeira, S. E. K. in Major Events in Early Vertebrate Evolution (ed. Ahlberg, P. E. ) 241–262 (Taylor and Francis, 2001)

    Google Scholar 

  17. Zhu, M., Yu, X., Wang, W., Zhao, W. & Jia, L. A primitive fish provides key characters bearing on deep osteichthyan phylogeny. Nature 441, 77–80 (2006)

    Article  ADS  CAS  Google Scholar 

  18. Coates, M. I. & Sequeira, S. E. K. The braincase of a primitive shark. Trans. R. Soc. Edinb. Earth Sci. 89, 63–85 (1998)

    Article  Google Scholar 

  19. Maisey, J. G., Miller, R. & Turner, S. The braincase of the chondrichthyan Doliodus from the Lower Devonian Campbellton Formation of New Brunswick, Canada. Acta Zoologica 90 (suppl. 1). 109–122 (2009)

    Article  Google Scholar 

  20. Maisey, J. G. Braincase of the Upper Devonian shark Cladodoides wildungensis (Chondrichthyes, Elasmobranchii), with observations on the braincase in early chondrichthyans. Bull. Am. Mus. Nat. Hist. 288, 1–103 (2005)

    Article  Google Scholar 

  21. Basden, A. M. & Young, G. C. A primitive actinopterygian neurocranium from the Early Devonian of southeastern Australia. J. Vertebr. Paleontol. 21, 754–766 (2001)

    Article  Google Scholar 

  22. Gradstein, F. M. et al. A Geologic Time Scale 2004 (Cambridge Univ. Press, 2004)

    Book  Google Scholar 

  23. Gardiner, B. G. The relationships of the palaeoniscoid fishes, a review based on new specimens of Mimia and Moythomasia from the Upper Devonian of Western Australia. Bull. Br. Mus. Nat. Hist. (Geol.) 37, 173–428 (1984)

    Google Scholar 

  24. Goodrich, E. S. Studies on the Structure and Development of Vertebrates (Univ. Chicago Press, 1930)

    Book  Google Scholar 

  25. Goujet, D. Les Poissons Placodermes du Spitsberg (Cahiers de Paléontologie, Section Vertebres, Centre national de la Recherche scientifique, 1984)

    Google Scholar 

  26. Maisey, J. G. & Lane, J. A. Labyrinth morphology and the evolution of low-frequency phonoreception in elasmobranchs. C. R. Palevol 9, 289–309 (2010)

    Article  Google Scholar 

  27. Pradel, A. et al. Skull and brain of a 300 million year old chimaeroid fish revealed by synchrotron holotomography. Proc. Natl Acad. Sci. USA 106, 5224–5228 (2009)

    Article  ADS  CAS  Google Scholar 

  28. Maisey, J. G. The postorbital palatoquadrate articulation in elasmobranchs. J. Morphol. 269, 1022–1040 (2008)

    Article  Google Scholar 

  29. Wills, M. A. Crustacean disparity through the Phanerozoic: comparing morphological and stratigraphic data. Biol. J. Linn. Soc. 65, 455–500 (1998)

    Article  Google Scholar 

  30. Ruta, M. Phylogenetic signal and character compatibility in the appendicular skeleton of early tetrapods. Spec. Pap. Palaeontol. 86, 1–21 (2011)

    Google Scholar 

  31. Swofford, D. L. PAUP*: Phylogenetic Analysis Using Parsimony (and Other Methods) v.4.0b10 for PC (Sinauer Associates, 2002)

    Google Scholar 

  32. Felsenstein, J. Confidence-limits on phylogenies—an approach using the bootstrap. Evolution 39, 783–791 (1985)

    Article  Google Scholar 

  33. Bremer, K. The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction. Evolution 42, 795–803 (1988)

    Article  CAS  Google Scholar 

  34. Eriksson, T. AutoDecay v. 5.0. (2001)

    Google Scholar 

  35. Davis, J. C. Statistics and Data Analysis in Geology (John Wiley and Sons, 1986)

    Google Scholar 

  36. Creanza, N., Schwarz, J. S. & Cohen, J. E. Intraseasonal dynamics and dominant sequences in H3N2 influenza. PLoS ONE 5, e8544 (2010)

    Article  ADS  Google Scholar 

  37. Sokal, R. R. & Rohlf, F. J. Biometry (W. H. Freeman, 1995)

    MATH  Google Scholar 

Download references

Acknowledgements

We thank R. Paton, Z. Johanson, M. Richter, J. Clack, D. Unwin and W. Simpson for specimen loans and collections access; M. Friedman, M. Brazeau, G. Hanke and J. Long for discussions on early gnathostome cranial anatomy. Financial support for this work was provided by Natural Environment Research Council (UK) studentship GT4/97/183ES, and grant DEB-0917922 from the National Science Foundation (USA) (to M.I.C.).

Author information

Authors and Affiliations

Authors

Contributions

S.P.D. completed the original data collection and initial analysis. S.P.D. and M.I.C. contributed to anatomical analysis, initiated the project and assembled the comparative data set. J.A.F. performed quantitative phenetic analyses. M.I.C. and J.A.F. contributed to phylogenetic analysis and figure preparation. All authors contributed to manuscript preparation.

Corresponding author

Correspondence to Michael I. Coates.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-20, Supplementary Tables 1-8, Supplementary Notes 1-2 and Supplementary References – see Contents list for details. (PDF 12283 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, S., Finarelli, J. & Coates, M. Acanthodes and shark-like conditions in the last common ancestor of modern gnathostomes. Nature 486, 247–250 (2012). https://doi.org/10.1038/nature11080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature11080

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing