Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The evolution of gene expression levels in mammalian organs

Abstract

Changes in gene expression are thought to underlie many of the phenotypic differences between species. However, large-scale analyses of gene expression evolution were until recently prevented by technological limitations. Here we report the sequencing of polyadenylated RNA from six organs across ten species that represent all major mammalian lineages (placentals, marsupials and monotremes) and birds (the evolutionary outgroup), with the goal of understanding the dynamics of mammalian transcriptome evolution. We show that the rate of gene expression evolution varies among organs, lineages and chromosomes, owing to differences in selective pressures: transcriptome change was slow in nervous tissues and rapid in testes, slower in rodents than in apes and monotremes, and rapid for the X chromosome right after its formation. Although gene expression evolution in mammals was strongly shaped by purifying selection, we identify numerous potentially selectively driven expression switches, which occurred at different rates across lineages and tissues and which probably contributed to the specific organ biology of various mammals.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global patterns of gene expression differences among mammals.
Figure 2: Expression divergence rates across tissues and chromosomes.
Figure 3: Lineage-specific expression shifts of transcription modules and individual genes.

Accession codes

Primary accessions

Gene Expression Omnibus

Data deposits

Sequencing data have been deposited in the Gene Expression Omnibus under accession code GSE30352.

References

  1. Kemp, T. S. The Origin and Evolution of Mammals (Oxford Univ. Press, Oxford, 2005)

    Google Scholar 

  2. Ponting, C. P. The functional repertoires of metazoan genomes. Nature Rev. Genet. 9, 689–698 (2008)

    Article  CAS  Google Scholar 

  3. King, M. C. & Wilson, A. C. Evolution at two levels in humans and chimpanzees. Science 188, 107–116 (1975)

    Article  ADS  CAS  Google Scholar 

  4. Caceres, M. et al. Elevated gene expression levels distinguish human from non-human primate brains. Proc. Natl Acad. Sci. USA 100, 13030–13035 (2003)

    Article  ADS  CAS  Google Scholar 

  5. Enard, W. et al. Intra- and interspecific variation in primate gene expression patterns. Science 296, 340–343 (2002)

    Article  ADS  CAS  Google Scholar 

  6. Khaitovich, P., Enard, W., Lachmann, M. & Paabo, S. Evolution of primate gene expression. Nature Rev. Genet. 7, 693–702 (2006)

    Article  CAS  Google Scholar 

  7. Gilad, Y., Oshlack, A., Smyth, G. K., Speed, T. P. & White, K. P. Expression profiling in primates reveals a rapid evolution of human transcription factors. Nature 440, 242–245 (2006)

    Article  ADS  CAS  Google Scholar 

  8. Uddin, M. et al. Sister grouping of chimpanzees and humans as revealed by genome-wide phylogenetic analysis of brain gene expression profiles. Proc. Natl Acad. Sci. USA 101, 2957–2962 (2004)

    Article  ADS  CAS  Google Scholar 

  9. Liao, B. Y. & Zhang, J. Evolutionary conservation of expression profiles between human and mouse orthologous genes. Mol. Biol. Evol. 23, 530–540 (2006)

    Article  CAS  Google Scholar 

  10. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nature Rev. Genet. 10, 57–63 (2009)

    Article  CAS  Google Scholar 

  11. Montgomery, S. B. et al. Transcriptome genetics using second generation sequencing in a Caucasian population. Nature 464, 773–777 (2010)

    Article  ADS  CAS  Google Scholar 

  12. Pickrell, J. K. et al. Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464, 768–772 (2010)

    Article  ADS  CAS  Google Scholar 

  13. Blekhman, R., Marioni, J. C., Zumbo, P., Stephens, M. & Gilad, Y. Sex-specific and lineage-specific alternative splicing in primates. Genome Res. 20, 180–189 (2010)

    Article  CAS  Google Scholar 

  14. Babbitt, C. C. et al. Both noncoding and protein-coding RNAs contribute to gene expression evolution in the primate brain. Genome Biol. Evol. 2, 67–79 (2010)

    Article  Google Scholar 

  15. Hubbard, T. J. et al. Ensembl 2009. Nucleic Acids Res. 37, D690–D697 (2009)

    Article  CAS  Google Scholar 

  16. Chodroff, R. A. et al. Long noncoding RNA genes: conservation of sequence and brain expression among diverse amniotes. Genome Biol. 11, R72 (2010)

    Article  Google Scholar 

  17. Clark, M. B. et al. The reality of pervasive transcription. PLoS Biol. 9, e1000625 (2011)

    Article  CAS  Google Scholar 

  18. Goodman, M. The genomic record of humankind’s evolutionary roots. Am. J. Hum. Genet. 64, 31–39 (1999)

    Article  CAS  Google Scholar 

  19. Caswell, J. L. et al. Analysis of chimpanzee history based on genome sequence alignments. PLoS Genet. 4, e1000057 (2008)

    Article  Google Scholar 

  20. Harcourt, A. H., Harvey, P. H., Larson, S. G. & Short, R. V. Testis weight, body weight and breeding system in primates. Nature 293, 55–57 (1981)

    Article  ADS  CAS  Google Scholar 

  21. Li, W. H., Ellsworth, D. L., Krushkal, J., Chang, B. H. & Hewett-Emmett, D. Rates of nucleotide substitution in primates and rodents and the generation-time effect hypothesis. Mol. Phylogenet. Evol. 5, 182–187 (1996)

    Article  CAS  Google Scholar 

  22. The. Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437, 69–87 (2005)

  23. Warren, W. C. et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature 453, 175–183 (2008)

    Article  ADS  CAS  Google Scholar 

  24. Keightley, P. D., Lercher, M. J. & Eyre-Walker, A. Evidence for widespread degradation of gene control regions in hominid genomes. PLoS Biol. 3, e42 (2005)

    Article  Google Scholar 

  25. Marcus, G. The Birth of the Mind (Basic Books, 2004)

    Google Scholar 

  26. Khaitovich, P. et al. Parallel patterns of evolution in the genomes and transcriptomes of humans and chimpanzees. Science 309, 1850–1854 (2005)

    Article  ADS  CAS  Google Scholar 

  27. Chan, E. T. et al. Conservation of core gene expression in vertebrate tissues. J. Biol. 8, 33 (2009)

    Article  Google Scholar 

  28. Kaessmann, H. Origins, evolution, and phenotypic impact of new genes. Genome Res. 20, 1313–1326 (2010)

    Article  CAS  Google Scholar 

  29. Birkhead, T. R. & Pizzari, T. Postcopulatory sexual selection. Nature Rev. Genet. 3, 262–273 (2002)

    Article  CAS  Google Scholar 

  30. Veyrunes, F. et al. Bird-like sex chromosomes of platypus imply recent origin of mammal sex chromosomes. Genome Res. 18, 965–973 (2008)

    Article  CAS  Google Scholar 

  31. Potrzebowski, L. et al. Chromosomal gene movements reflect the recent origin and biology of therian sex chromosomes. PLoS Biol. 6, e80 (2008)

    Article  Google Scholar 

  32. Grützner, F. et al. In the platypus a meiotic chain of ten sex chromosomes shares genes with the bird Z and mammal X chromosomes. Nature 432, 913–917 (2004)

    Article  ADS  Google Scholar 

  33. Potrzebowski, L., Vinckenbosch, N. & Kaessmann, H. The emergence of new genes on the young therian X. Trends Genet. 26, 1–4 (2010)

    Article  CAS  Google Scholar 

  34. Ross, M. T. et al. The DNA sequence of the human X chromosome. Nature 434, 325–337 (2005)

    Article  ADS  CAS  Google Scholar 

  35. Rice, W. R. Sex chromosomes and the evolution of sexual dimorphism. Evolution 38, 735–742 (1984)

    Article  Google Scholar 

  36. Charlesworth, B. Model for evolution of Y chromosomes and dosage compensation. Proc. Natl Acad. Sci. USA 75, 5618–5622 (1978)

    Article  ADS  CAS  Google Scholar 

  37. Zhang, Y. E., Vibranovski, M. D., Landback, P., Marais, G. A. & Long, M. Chromosomal redistribution of male-biased genes in mammalian evolution with two bursts of gene gain on the X chromosome. PLoS Biol. 8, e1000494 (2010)

    Article  Google Scholar 

  38. Wilson, M. A. & Makova, K. D. Evolution and survival on eutherian sex chromosomes. PLoS Genet. 5, e1000568 (2009)

    Article  Google Scholar 

  39. Bachtrog, D., Jensen, J. D. & Zhang, Z. Accelerated adaptive evolution on a newly formed X chromosome. PLoS Biol. 7, e82 (2009)

    Article  Google Scholar 

  40. Ihmels, J., Bergmann, S. & Barkai, N. Defining transcription modules using large-scale gene expression data. Bioinformatics 20, 1993–2003 (2004)

    Article  CAS  Google Scholar 

  41. Xiong, Y. et al. RNA sequencing shows no dosage compensation of the active X-chromosome. Nature Genet. 42, 1043–1047 (2010)

    Article  CAS  Google Scholar 

  42. Kemkemer, C., Kohn, M., Kehrer-Sawatzki, H., Fundele, R. H. & Hameister, H. Enrichment of brain-related genes on the mammalian X chromosome is ancient and predates the divergence of synapsid and sauropsid lineages. Chromosome Res. 17, 811–820 (2009)

    Article  CAS  Google Scholar 

  43. Haygood, R., Babbitt, C. C., Fedrigo, O. & Wray, G. A. Contrasts between adaptive coding and noncoding changes during human evolution. Proc. Natl Acad. Sci. USA 107, 7853–7857 (2010)

    Article  ADS  CAS  Google Scholar 

  44. Schoenemann, P. T., Sheehan, M. J. & Glotzer, L. D. Prefrontal white matter volume is disproportionately larger in humans than in other primates. Nature Neurosci. 8, 242–252 (2005)

    Article  CAS  Google Scholar 

  45. Duret, L. & Galtier, N. Biased gene conversion and the evolution of mammalian genomic landscapes. Annu. Rev. Genomics Hum. Genet. 10, 285–311 (2009)

    Article  CAS  Google Scholar 

  46. Nielsen, R. et al. A scan for positively selected genes in the genomes of humans and chimpanzees. PLoS Biol. 3, e170 (2005)

    Article  Google Scholar 

  47. Fyfe, J. C. et al. An approximately 140-kb deletion associated with feline spinal muscular atrophy implies an essential LIX1 function for motor neuron survival. Genome Res. 16, 1084–1090 (2006)

    Article  CAS  Google Scholar 

  48. Tong, Y., Xu, Y., Scearce-Levie, K., Ptacek, L. J. & Fu, Y. H. COL25A1 triggers and promotes Alzheimer’s disease-like pathology in vivo . Neurogenetics 11, 41–52 (2010)

    Article  CAS  Google Scholar 

  49. Vauti, F. et al. The mouse Trm1-like gene is expressed in neural tissues and plays a role in motor coordination and exploratory behaviour. Gene 389, 174–185 (2007)

    Article  CAS  Google Scholar 

  50. Kircher, M., Stenzel, U. & Kelso, J. Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol. 10, R83 (2009)

    Article  Google Scholar 

  51. Trapnell, C., Pachter, L. & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25, 1105–1111 (2009)

    Article  CAS  Google Scholar 

  52. Hubbard, T. J. et al. Ensembl 2009. Nucleic Acids Res. 37, D690–D697 (2009)

    Article  CAS  Google Scholar 

  53. Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008)

    Article  ADS  CAS  Google Scholar 

  54. Picard, F., Robin, S., Lebarbier, E. & Daudin, J. J. A segmentation/clustering model for the analysis of array CGH data. Biometrics 63, 758–766 (2007)

    Article  MathSciNet  CAS  Google Scholar 

  55. Vilella, A. J. et al. EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res. 19, 327–335 (2009)

    Article  CAS  Google Scholar 

  56. Blanchette, M. et al. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Res. 14, 708–715 (2004)

    Article  CAS  Google Scholar 

  57. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009)

    Article  Google Scholar 

  58. Kaessmann, H., Vinckenbosch, N. & Long, M. RNA-based gene duplication: mechanistic and evolutionary insights. Nature Rev. Genet. 10, 19–31 (2009)

    Article  CAS  Google Scholar 

  59. Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nature Methods 5, 621–628 (2008)

    Article  CAS  Google Scholar 

  60. Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Harshman and the LGTF for high-throughput sequencing support; I. Xenarios and the Vital-IT computational facility (Swiss Institute of Bioinformatics) for computational support; P. Jensen and L. Andersson for the red jungle fowl samples; E. Ait Yahya Graison and A. Reymond for C57BL/6J mouse RNA-seq data from male brain; C. Henrichsen and A. Reymond for wild-mouse samples; T. Daish, A. Casey, S. Lim, R. Jones and Glenrock station for platypus tissue collection and sample preparation; all other people and institutions that provided samples (Supplementary Table 1); W. Enard for ape sample organization; the members of the Kaessmann group for discussions; J. Meunier for statistical support; D. Cortez and M. Warnefors for comments on the manuscript; and R. Durbin and the Gorilla Genome Analysis Consortium for making the gorilla genome data available and for granting permission to use them for RNA-seq read mapping before publication. This research was supported by grants from the European Research Council (Starting Independent Researcher Grant: 242597, SexGenTransEvolution) and the Swiss National Science Foundation (grant 31003A_130287), to H.K. S.B. was supported by the Swiss National Science Foundation (grant 31003A_130691/1), the Swiss Institute of Bioinformatics and the European Framework Project 6 (AnEuploidy and EuroDia projects). S.P. was supported by the European Research Council (ERC-2008-AdG, TWOPAN) and by the Max Planck Society. A.N. was supported by a long-term FEBS postdoctoral fellowship. F.G. is an ARC Australian Research Fellow.

Author information

Authors and Affiliations

Authors

Contributions

D.B., G.C., H.K., A.N. and P.H. performed biological data analyses. M.S. organized the RNA-seq data production. D.B. and A.N. processed and mapped the reads. A.N. refined genome annotations and established definitions and alignments of constitutive exons. M.S., A.L., F.W.A. and A.A.-P. prepared samples and generated RNA-seq libraries. M.W. prepared samples. P.J. contributed ideas regarding data analyses. F.W.A. coordinated ape RNA-seq data production. M.K. processed ape RNA-seq data. U.Z. extracted and organized Monodelphis domestica samples and advised on this species’ biology. P.K. organized Macaca mulatta samples and provided general advice on gene expression evolution. F.G. organized and extracted platypus RNA samples and advised on this species’ biology. P.H. developed the gene expression selection method and performed all corresponding analyses under the guidance of R.N. G.C. performed analyses using the iterative signature algorithm under the guidance of S.B. S.P. guided ape RNA-seq data production and processing. The project was supervised and originally designed by H.K. The paper was written by H.K. with input from all authors.

Corresponding author

Correspondence to Henrik Kaessmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-9 with legends. (PDF 614 kb)

Supplementary Information

This file contains Supplementary Notes, which include Supplementary Methods, Supplementary Results and a Supplementary Discussion; Supplementary Tables 1-12, Supplementary Figures 1-27 with legends and additional references. (PDF 1733 kb)

Supplementary Tables

This zipped file contains 5 Supplementary Tables files as follows: Supplementary Tables 1-2 provide detailed information about all samples used in the study; Supplementary Table 3 provides examples of genes with sex-biased expression in various amniote species; Supplementary Tables 4-10 provide detailed data and overviews regarding transcription modules in the all-amniote and primate-specific datasets; Supplementary Tables 11-26 describe all statistically significant expression shifts of individual genes that occurred in the different amniote/primate lineages and Supplementary Tables 27-42 show the most overrepresented GO biological processes among lineage-specific expression changes of individual genes. (ZIP 2930 kb)

Supplementary Data 1

This file provides all normalized expression values for all-amniote and primate-specific sets of orthologs. (ZIP 16104 kb)

Supplementary Data 2

This file provides all normalized expression values for all-amniote and primate-specific sets of orthologs. (ZIP 24275 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brawand, D., Soumillon, M., Necsulea, A. et al. The evolution of gene expression levels in mammalian organs. Nature 478, 343–348 (2011). https://doi.org/10.1038/nature10532

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10532

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing