Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats

Abstract

Vampire bats (Desmodus rotundus) are obligate blood feeders that have evolved specialized systems to suit their sanguinary lifestyle1,2,3. Chief among such adaptations is the ability to detect infrared radiation as a means of locating hotspots on warm-blooded prey. Among vertebrates, only vampire bats, boas, pythons and pit vipers are capable of detecting infrared radiation1,4. In each case, infrared signals are detected by trigeminal nerve fibres that innervate specialized pit organs on the animal’s face5,6,7,8,9,10. Thus, vampire bats and snakes have taken thermosensation to the extreme by developing specialized systems for detecting infrared radiation. As such, these creatures provide a window into the molecular and genetic mechanisms underlying evolutionary tuning of thermoreceptors in a species-specific or cell-type-specific manner. Previously, we have shown that snakes co-opt a non-heat-sensitive channel, vertebrate TRPA1 (transient receptor potential cation channel A1), to produce an infrared detector6. Here we show that vampire bats tune a channel that is already heat-sensitive, TRPV1, by lowering its thermal activation threshold to about 30 °C. This is achieved through alternative splicing of TRPV1 transcripts to produce a channel with a truncated carboxy-terminal cytoplasmic domain. These splicing events occur exclusively in trigeminal ganglia, and not in dorsal root ganglia, thereby maintaining a role for TRPV1 as a detector of noxious heat in somatic afferents. This reflects a unique organization of the bat Trpv1 gene that we show to be characteristic of Laurasiatheria mammals (cows, dogs and moles), supporting a close phylogenetic relationship with bats. These findings reveal a novel molecular mechanism for physiological tuning of thermosensory nerve fibres.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Anatomy of fruit bat and vampire bat sensory ganglia.
Figure 2: Sequence and distribution of vampire bat TRPV1.
Figure 3: Functional analyses of vampire bat TRPV1 isoforms.
Figure 4: Genomic organization of mammalian Trpv1 locus.

Accession codes

Primary accessions

GenBank/EMBL/DDBJ

Gene Expression Omnibus

Data deposits

Deep sequencing data are archived under GEO accession number GSE28243. GenBank accession numbers are JN006855 (D. rotundus TRPV1-S), JN006856 (D. rotundus TRPV1-L), JN006857 (D. rotundus TRPA1), JN006858 (C. brevicauda TRPA1), JN006859 (C. brevicauda TRPV1-L), JN006860 (C. brevicauda TRPV1-S), JN006861 (Scapanus orarius TRPV1-L), JN006862 (S. orarius TRPV1-S), JN006863 (Pteropus rodricensis intron), JN006864 (D. rotundus intron), JN006865 (C. brevicauda intron), JN006866 (P. vampyrus intron), JN006867 (Rousettus aegyptiacus intron) and JN006868 (S. orarius intron).

References

  1. Kurten, L. & Schmidt, U. Thermoperception in the common vampire bat (Desmodus rotundus). J. Comp. Physiol. 146, 223–228 (1982)

    Article  Google Scholar 

  2. Schutt, B. Dark Banquet: Blood and the Curious Lives of Blood-Feeding Creatures (Three Rivers Press, 2008)

    Google Scholar 

  3. Tellgren-Roth, A. et al. Keeping the blood flowing — plasminogen activator genes and feeding behavior in vampire bats. Naturwissenschaften 96, 39–47 (2009)

    Article  ADS  CAS  Google Scholar 

  4. Campbell, A. L., Naik, R. R., Sowards, L. & Stone, M. O. Biological infrared imaging and sensing. Micron 33, 211–225 (2002)

    Article  Google Scholar 

  5. Bullock, T. H. & Cowles, R. B. Physiology of an infrared receptor: the facial pit of pit vipers. Science 115, 541–543 (1952)

    Article  ADS  CAS  Google Scholar 

  6. Gracheva, E. O. et al. Molecular basis of infrared detection by snakes. Nature 464, 1006–1011 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Kurten, L., Schmidt, U. & Schafer, K. Warm and cold receptors in the nose of the vampire bat Desmodus rotundus . Naturwissenschaften 71, 327–328 (1984)

    Article  ADS  CAS  Google Scholar 

  8. Molenaar, G. J. The sensory trigeminal system of a snake in the possession of infrared receptors. II. The central projections of the trigeminal nerve. J. Comp. Neurol. 179, 137–151 (1978)

    Article  CAS  Google Scholar 

  9. Bakken, G. S. & Krochmal, A. R. The imaging properties and sensitivity of the facial pits of pitvipers as determined by optical and heat-transfer analysis. J. Exp. Biol. 210, 2801–2810 (2007)

    Article  Google Scholar 

  10. Safer, A. B. & Grace, M. S. Infrared imaging in vipers: differential responses of crotaline and viperine snakes to paired thermal targets. Behav. Brain Res. 154, 55–61 (2004)

    Article  Google Scholar 

  11. Kishida, R., Goris, R. C., Terashima, S. & Dubbeldam, J. L. A suspected infrared-recipient nucleus in the brainstem of the vampire bat, Desmodus rotundus . Brain Res. 322, 351–355 (1984)

    Article  CAS  Google Scholar 

  12. Schafer, K., Braun, H. A. & Kurten, L. Analysis of cold and warm receptor activity in vampire bats and mice. Pflugers Arch. 412, 188–194 (1988)

    Article  CAS  Google Scholar 

  13. Caterina, M. J. et al. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389, 816–824 (1997)

    Article  ADS  CAS  Google Scholar 

  14. Jordt, S. E., McKemy, D. D. & Julius, D. Lessons from peppers and peppermint: the molecular logic of thermosensation. Curr. Opin. Neurobiol. 13, 487–492 (2003)

    Article  CAS  Google Scholar 

  15. Ramsey, I. S., Delling, M. & Clapham, D. E. An introduction to TRP channels. Annu. Rev. Physiol. 68, 619–647 (2006)

    Article  CAS  Google Scholar 

  16. Black, D. L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003)

    Article  CAS  Google Scholar 

  17. Will, C. L. & Luhrmann, R. Splicing of a rare class of introns by the U12-dependent spliceosome. Biol. Chem. 386, 713–724 (2005)

    Article  CAS  Google Scholar 

  18. Murphy, W. J. et al. Molecular phylogenetics and the origins of placental mammals. Nature 409, 614–618 (2001)

    Article  ADS  CAS  Google Scholar 

  19. Murphy, W. J. et al. Resolution of the early placental mammal radiation using Bayesian phylogenetics. Science 294, 2348–2351 (2001)

    Article  ADS  CAS  Google Scholar 

  20. Nishihara, H., Hasegawa, M. & Okada, N. Pegasoferae, an unexpected mammalian clade revealed by tracking ancient retroposon insertions. Proc. Natl Acad. Sci. USA 103, 9929–9934 (2006)

    Article  ADS  CAS  Google Scholar 

  21. Asher, R. J., Bennett, N. & Lehmann, T. The new framework for understanding placental mammal evolution. Bioessays 31, 853–864 (2009)

    Article  CAS  Google Scholar 

  22. Prasad, A. B., Allard, M. W. & Green, E. D. Confirming the phylogeny of mammals by use of large comparative sequence data sets. Mol. Biol. Evol. 25, 1795–1808 (2008)

    Article  CAS  Google Scholar 

  23. Pettigrew, J. D. et al. Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). Phil. Trans. R. Soc. Lond. B 325, 489–559 (1989)

    Article  ADS  CAS  Google Scholar 

  24. Spence, R., Gerlach, G., Lawrence, C. & Smith, C. The behaviour and ecology of the zebrafish, Danio rerio . Biol. Rev. Camb. Phil. Soc. 83, 13–34 (2008)

    Article  Google Scholar 

  25. Grabowski, P. J. & Black, D. L. Alternative RNA splicing in the nervous system. Prog. Neurobiol. 65, 289–308 (2001)

    Article  CAS  Google Scholar 

  26. Prescott, E. D. & Julius, D. A modular PIP2 binding site as a determinant of capsaicin receptor sensitivity. Science 300, 1284–1288 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Chuang, H. H., Neuhausser, W. M. & Julius, D. The super-cooling agent icilin reveals a mechanism of coincidence detection by a temperature-sensitive TRP channel. Neuron 43, 859–869 (2004)

    Article  CAS  Google Scholar 

  28. DeCoursey, T. E. & Cherny, V. V. Temperature dependence of voltage-gated H+ currents in human neutrophils, rat alveolar epithelial cells, and mammalian phagocytes. J. Gen. Physiol. 112, 503–522 (1998)

    Article  CAS  Google Scholar 

  29. Notredame, C., Higgins, D. G. & Heringa, J. J. Mol. Biol. 302, 205–217 (2000)

    Google Scholar 

  30. Ronquist, F. & Huelsenbeck, J. P. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Kelly and J. Poblete for technical assistance, C. Sehnert for help with bovine tissue collection, M. Suzawa and H. Ingraham for providing zebrafish mRNA, A. Walsh for providing megabat blood samples, the Centro Técnico de Producción Socialista Florentino for providing access to Hato Piñero (Cojedes, Venezuela) for animal collection and J. Nassar for providing access to laboratory material required for specimen collection. This work was supported by a Ruth L. Kirschstein National Research Service Award (GM080853; N.T.I.), a Pathway to Independence Fellowship from the UCSF CVRI (E.O.G.), the Howard Hughes Medical Institute (J.S.W.), and grants from NIH, including P01 AG010770 (J.S.W.) and NS047723 and NS055299 (D.J.).

Author information

Authors and Affiliations

Authors

Contributions

E.O.G., J.F.C.-M. and N.T.I. designed and performed experiments and analysed data. N.T.I. and J.S.W. developed analytical tools and analysed data. J.A.G.-C., C.I.A. and C.M. collected bat species and obtained tissues for analysis. E.O.G., J.F.C.-M. and D.J. wrote the manuscript with discussion and contributions from all authors. J.S.W. and D.J. provided advice and guidance throughout.

Corresponding authors

Correspondence to Nicholas T. Ingolia or David Julius.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures

This file contains Supplementary Figures 1-15 with legends. (PDF 3132 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gracheva, E., Cordero-Morales, J., González-Carcacía, J. et al. Ganglion-specific splicing of TRPV1 underlies infrared sensation in vampire bats. Nature 476, 88–91 (2011). https://doi.org/10.1038/nature10245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature10245

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing