Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila

Abstract

Many stem, progenitor and cancer cells undergo periods of mitotic quiescence from which they can be reactivated1,2,3,4,5. The signals triggering entry into and exit from this reversible dormant state are not well understood. In the developing Drosophila central nervous system, multipotent self-renewing progenitors called neuroblasts6,7,8,9 undergo quiescence in a stereotypical spatiotemporal pattern10. Entry into quiescence is regulated by Hox proteins and an internal neuroblast timer11,12,13. Exit from quiescence (reactivation) is subject to a nutritional checkpoint requiring dietary amino acids14. Organ co-cultures also implicate an unidentified signal from an adipose/hepatic-like tissue called the fat body14. Here we provide in vivo evidence that Slimfast amino-acid sensing and Target of rapamycin (TOR) signalling15 activate a fat-body-derived signal (FDS) required for neuroblast reactivation. Downstream of this signal, Insulin-like receptor signalling and the Phosphatidylinositol 3-kinase (PI3K)/TOR network are required in neuroblasts for exit from quiescence. We demonstrate that nutritionally regulated glial cells provide the source of Insulin-like peptides (ILPs) relevant for timely neuroblast reactivation but not for overall larval growth. Conversely, ILPs secreted into the haemolymph by median neurosecretory cells systemically control organismal size16,17,18 but do not reactivate neuroblasts. Drosophila thus contains two segregated ILP pools, one regulating proliferation within the central nervous system and the other controlling tissue growth systemically. Our findings support a model in which amino acids trigger the cell cycle re-entry of neural progenitors via a fat-body–glia–neuroblasts relay. This mechanism indicates that dietary nutrients and remote organs, as well as local niches, are key regulators of transitions in stem-cell behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TOR/PI3K signalling in fat body and neuroblasts regulates reactivation.
Figure 2: Insulin-like peptides but not mNSCs control neuroblast reactivation.
Figure 3: CNS-specific Insulin-like peptides are sufficient for neuroblast reactivation.
Figure 4: Ilp6 -expressing glia are nutritionally regulated.

Similar content being viewed by others

References

  1. Dhawan, J. & Rando, T. A. Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol. 15, 666–673 (2005)

    Article  CAS  PubMed  Google Scholar 

  2. Coller, H. A. What’s taking so long? S-phase entry from quiescence versus proliferation. Nature Rev. Mol. Cell Biol. 8, 667–670 (2007)

    Article  CAS  Google Scholar 

  3. Yanagida, M. Cellular quiescence: are controlling genes conserved? Trends Cell Biol. 19, 705–715 (2009)

    Article  CAS  PubMed  Google Scholar 

  4. Chen, E. & Finkel, T. The tortoise, the hare, and the FoxO. Cell Stem Cell 5, 451–452 (2009)

    Article  CAS  PubMed  Google Scholar 

  5. Sánchez-Garcia, I., Vicente-Duenas, C. & Cobaleda, C. The theoretical basis of cancer-stem-cell-based therapeutics of cancer: can it be put into practice? Bioessays 29, 1269–1280 (2007)

    Article  PubMed  Google Scholar 

  6. Betschinger, J. & Knoblich, J. A. Dare to be different: asymmetric cell division in Drosophila, C. elegans and vertebrates. Curr. Biol. 14, R674–R685 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. Egger, B., Chell, J. M. & Brand, A. H. Insights into neural stem cell biology from flies. Phil. Trans. R. Soc. Lond. B 363, 39–56 (2008)

    Article  CAS  Google Scholar 

  8. Doe, C. Q. Neural stem cells: balancing self-renewal with differentiation. Development 135, 1575–1587 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. Sousa-Nunes, R., Cheng, L. Y. & Gould, A. P. Regulating neural proliferation in the Drosophila CNS. Curr. Opin. Neurobiol. 20, 50–57 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Truman, J. W. & Bate, M. Spatial and temporal patterns of neurogenesis in the central nervous system of Drosophila melanogaster . Dev. Biol. 125, 145–157 (1988)

    Article  CAS  PubMed  Google Scholar 

  11. Tsuji, T., Hasegawa, E. & Isshiki, T. Neuroblast entry into quiescence is regulated intrinsically by the combined action of spatial Hox proteins and temporal identity factors. Development 135, 3859–3869 (2008)

    Article  CAS  PubMed  Google Scholar 

  12. Kambadur, R. et al. Regulation of POU genes by castor and hunchback establishes layered compartments in the Drosophila CNS. Genes Dev. 12, 246–260 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Isshiki, T., Pearson, B., Holbrook, S. & Doe, C. Q. Drosophila neuroblasts sequentially express transcription factors which specify the temporal identity of their neuronal progeny. Cell 106, 511–521 (2001)

    Article  CAS  PubMed  Google Scholar 

  14. Britton, J. S. & Edgar, B. A. Environmental control of the cell cycle in Drosophila: nutrition activates mitotic and endoreplicative cells by distinct mechanisms. Development 125, 2149–2158 (1998)

    CAS  PubMed  Google Scholar 

  15. Colombani, J. et al. A nutrient sensor mechanism controls Drosophila growth. Cell 114, 739–749 (2003)

    Article  CAS  PubMed  Google Scholar 

  16. Brogiolo, W. et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213–221 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Ikeya, T., Galic, M., Belawat, P., Nairz, K. & Hafen, E. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila . Curr. Biol. 12, 1293–1300 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. Rulifson, E. J., Kim, S. K. & Nusse, R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296, 1118–1120 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Slaidina, M., Delanoue, R., Gronke, S., Partridge, L. & Leopold, P. A Drosophila insulin-like peptide promotes growth during nonfeeding states. Dev. Cell 17, 874–884 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Okamoto, N. et al. A fat body-derived IGF-like peptide regulates postfeeding growth in Drosophila . Dev. Cell 17, 885–891 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Géminard, C., Rulifson, E. J. & Leopold, P. Remote control of insulin secretion by fat cells in Drosophila . Cell Metab. 10, 199–207 (2009)

    Article  PubMed  Google Scholar 

  22. Polak, P. & Hall, M. N. mTOR and the control of whole body metabolism. Curr. Opin. Cell Biol. 21, 209–218 (2009)

    Article  CAS  PubMed  Google Scholar 

  23. Neufeld, T. P. Body building: regulation of shape and size by PI3K/TOR signaling during development. Mech. Dev. 120, 1283–1296 (2003)

    Article  CAS  PubMed  Google Scholar 

  24. Teleman, A. A. Molecular mechanisms of metabolic regulation by insulin in Drosophila . Biochem. J. 425, 13–26 (2010)

    Article  CAS  Google Scholar 

  25. Grönke, S., Clarke, D. F., Broughton, S., Andrews, T. D. & Partridge, L. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 6, e1000857 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhang, H. et al. Deletion of Drosophila insulin-like peptides causes growth defects and metabolic abnormalities. Proc. Natl Acad. Sci. USA 106, 19617–19622 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chell, J. M. & Brand, A. H. Nutrition-responsive glia control exit of neural stem cells from quiescence. Cell 143, 1161–1173 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mangan, S. & Alon, U. Structure and function of the feed-forward loop network motif. Proc. Natl Acad. Sci. USA 100, 11980–11985 (2003)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fernandez-Almonacid, R. & Rosen, O. M. Structure and ligand specificity of the Drosophila melanogaster insulin receptor. Mol. Cell. Biol. 7, 2718–2727 (1987)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hodge, R. D., D’Ercole, A. J. & O’Kusky, J. R. Insulin-like growth factor-I accelerates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex. J. Neurosci. 24, 10201–10210 (2004)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Oldham, S. et al. Genetic and biochemical characterization of dTOR, the Drosophila homolog of the target of rapamycin. Genes Dev. 14, 2689–2694 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Brogiolo, W. et al. An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213–221 (2001)

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, H. et al. Deletion of Drosophila insulin-like peptides causes growth defects and metabolic abnormalities. Proc. Natl Acad. Sci. USA 106, 19617–19622 (2009)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gronke, S. et al. Molecular evolution and functional characterization of Drosophila insulin-like peptides. PLoS Genet. 6, e1000857 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  35. Colombani, J. et al. A nutrient sensor mechanism controls Drosophila growth. Cell 114, 739–749 (2003)

    Article  CAS  PubMed  Google Scholar 

  36. Tapon, N. et al. The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105, 345–355 (2001)

    Article  CAS  PubMed  Google Scholar 

  37. Hennig, K. M., Colombani, J. & Neufeld, T. P. TOR coordinates bulk and targeted endocytosis in the Drosophila melanogaster fat body to regulate cell growth. J. Cell Biol. 173, 963–974 (2006)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xiong, W. C. et al. repo encodes a glial-specific homeo domain protein required in the Drosophila nervous system. Genes Dev. 8, 981–994 (1994)

    Article  CAS  PubMed  Google Scholar 

  39. Connolly, J. B. et al. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274, 2104–2107 (1996)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Ito, K., Urban, J. & Technau, G. M. Distribution, classification, and development of Drosophila glial cells in the late embryonic and early larval ventral nerve cord. Rouxs Arch. Dev. Biol. 204, 284–307 (1995)

    Article  PubMed  Google Scholar 

  41. Hacker, U. et al. piggyBac-based insertional mutagenesis in the presence of stably integrated P elements in Drosophila . Proc. Natl Acad. Sci. USA 100, 7720–7725 (2003)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Shiga, Y., Tanaka-Matakatsu, M. & Hayashi, S. A nuclear GFP/ β-galactosidase fusion protein as a marker for morphogenesis in living Drosophila . Dev. Growth Differ. 38, 99–106 (1996)

    Article  CAS  Google Scholar 

  43. Leevers, S. J. et al. The Drosophila phosphoinositide 3-kinase Dp110 promotes cell growth. EMBO J. 15, 6584–6594 (1996)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Huang, H. et al. PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. Development 126, 5365–5372 (1999)

    CAS  PubMed  Google Scholar 

  45. Weinkove, D. et al. Regulation of imaginal disc cell size, cell number and organ size by Drosophila class IA phosphoinositide 3-kinase and its adaptor. Curr. Biol. 9, 1019–1029 (1999)

    Article  CAS  PubMed  Google Scholar 

  46. Rintelen, F., Stocker, H., Thomas, G. & Hafen, E. PDK1 regulates growth through Akt and S6K in Drosophila . Proc. Natl Acad. Sci. USA 98, 15020–15025 (2001)

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Puig, O., Marr, M. T., Ruhf, M. L. & Tjian, R. Control of cell number by Drosophila FOXO: downstream and feedback regulation of the insulin receptor pathway. Genes Dev. 17, 2006–2020 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Miguel-Aliaga, I., Thor, S. & Gould, A. P. Postmitotic specification of Drosophila insulinergic neurons from pioneer neurons. PLoS Biol. 6, e58 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ikeya, T. et al. Nutrient-dependent expression of insulin-like peptides from neuroendocrine cells in the CNS contributes to growth regulation in Drosophila . Curr. Biol. 12, 1293–1300 (2002)

    Article  CAS  PubMed  Google Scholar 

  50. Moline, M. M., Southern, C. & Bejsovec, A. Directionality of wingless protein transport influences epidermal patterning in the Drosophila embryo. Development 126, 4375–4384 (1999)

    CAS  PubMed  Google Scholar 

  51. Maurange, C., Cheng, L. & Gould, A. P. Temporal transcription factors and their targets schedule the end of neural proliferation in Drosophila . Cell 133, 891–902 (2008)

    Article  CAS  PubMed  Google Scholar 

  52. Awasaki, T., Lai, S.-L., Ito, K. & Lee, T. Organization and postembryonic development of glial cells in the adult central brain of Drosophila . J. Neurosci. 28, 13742–13753 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schwabe, T. et al. GPCR Signaling is required for blood-brain barrier formation in Drosophila . Cell 123, 133–144 (2005)

    Article  CAS  PubMed  Google Scholar 

  54. Scholz, H., Sadlowski, E., Klaes, A. & Klambt, C. Control of midline glia development in the embryonic Drosophila CNS. Mech. Dev. 64, 139–151 (1997)

    Article  Google Scholar 

  55. Kidd, T., Bland, K. S. & Goodman, C. S. Slit is the midline repellent for the Robo receptor in Drosophila . Cell 96, 785–794 (1999)

    Article  CAS  PubMed  Google Scholar 

  56. Rulifson, E. J., Kim, S. K. & Nusse, R. Ablation of insulin-producing neurons in flies: growth and diabetic phenotypes. Science 296, 1118–1120 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  57. Pospisilik, J. A. et al. Drosophila genome-wide obesity screen reveals hedgehog as a determinant of brown versus white adipose cell fate. Cell 140, 148–160 (2010)

    Article  CAS  PubMed  Google Scholar 

  58. de Navas, L. F., Garaulet, D. L. & Sanchez-Herrero, E. The Ultrabithorax Hox gene of Drosophila controls haltere size by regulating the Dpp pathway. Development 133, 4495–4506 (2006)

    Article  CAS  PubMed  Google Scholar 

  59. Pfeiffer, S., Alexandre, C., Calleja, M. & Vincent, J. P. The progeny of wingless-expressing cells deliver the signal at a distance in Drosophila embryos. Curr. Biol. 10, 321–324 (2000)

    Article  CAS  PubMed  Google Scholar 

  60. Silies, M. et al. Glial cell migration in the eye disc. J. Neurosci. 27, 13130–13139 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Brand, S. Cohen, B. Edgar, U. Gaul, E. Hafen, C. Klambt, T. Lee, S. Leevers, P. Leopold, F. Matsuzaki, I. Miguel-Aliaga, T. Neufeld, R. Palmer, L. Partridge, L. Pick, E. Sanchez-Herrero, H. Stocker, N. Tapon and T. Xu, and also to the Bloomington stock centre and Kyoto National Institute of Genetics (NIG) for Drosophila stocks, antibodies and plasmids. We also acknowledge I. Salecker, J.-P. Vincent, A. Bailey, E. Cinnamon, L. Cheng, R. Makki, A. Matheu, P. Pachnis, P. Serpente and I. Stefana for providing advice, reagents and critical reading of the manuscript. The authors were supported by the Medical Research Council (U117584237).

Author information

Authors and Affiliations

Authors

Contributions

R.S.-N. and A.P.G. designed the experiments, R.S.-N. and L.L.Y. performed the experiments and R.S.-N. and A.P.G. wrote the manuscript. All authors have read and subscribe to the contents of the manuscript.

Corresponding author

Correspondence to Alex P. Gould.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Tables 1-2 and Supplementary Figures 1-4 with legends. (PDF 1400 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa-Nunes, R., Yee, L. & Gould, A. Fat cells reactivate quiescent neuroblasts via TOR and glial insulin relays in Drosophila. Nature 471, 508–512 (2011). https://doi.org/10.1038/nature09867

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09867

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing