Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The next generation of scenarios for climate change research and assessment

Abstract

Advances in the science and observation of climate change are providing a clearer understanding of the inherent variability of Earth’s climate system and its likely response to human and natural influences. The implications of climate change for the environment and society will depend not only on the response of the Earth system to changes in radiative forcings, but also on how humankind responds through changes in technology, economies, lifestyle and policy. Extensive uncertainties exist in future forcings of and responses to climate change, necessitating the use of scenarios of the future to explore the potential consequences of different response options. To date, such scenarios have not adequately examined crucial possibilities, such as climate change mitigation and adaptation, and have relied on research processes that slowed the exchange of information among physical, biological and social scientists. Here we describe a new process for creating plausible scenarios to investigate some of the most challenging and important questions about climate change confronting the global community.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Timeline highlighting some notable developments in the creation and use of emissions and climate scenarios.
Figure 2: Major natural and anthropogenic processes and influences on the climate system addressed in scenarios.
Figure 3: Sequential approach.
Figure 4: The parallel process.
Figure 5: Representative concentration pathways.

References

  1. Meehl, G. A. & Hibbard, K. A. A Strategy for Climate Change Stabilization Experiments with AOGCMs and ESMs (WCRP Informal Report No. 3/2007, ICPO Publication No. 112, IGBP Report No. 57, World Climate Research Programme, Geneva, 2007)

    Google Scholar 

  2. Hibbard, K. A., Meehl, G. A., Cox, P. & Friedlingstein, P. A strategy for climate change stabilization experiments. Eos 88, 217, 219, 221 (2007)

    Article  Google Scholar 

  3. Moss, R. H. et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies (IPCC Expert Meeting Report, IPCC, Geneva, 2008)

    Google Scholar 

  4. van Vuuren, D. P. et al. Work plan for data exchange between the integrated assessment and climate modeling community in support of phase-0 of scenario analysis for climate change assessment (representative community pathways). 〈http://www.aimes.ucar.edu/docs/RCP_handshake.pdf〉 (6 October 2008)

  5. Bradfield, R., Wright, G., Burta, G., Carnish, G. & Van Der Heijden, K. The origins and evolution of scenario techniques in long range business planning. Futures 37, 795–812 (2005)

    Article  Google Scholar 

  6. Jefferson, M. in Beyond Positive Economics? (ed. Wiseman, J.) 122–159 (Macmillan, 1983)

    Book  Google Scholar 

  7. Kahn, H. & Weiner, A. The Year 2000: A Framework for Speculation on the Next Thirty-three Years (Macmillan, 1967)

    Google Scholar 

  8. World Energy Council. Energy for Tomorrow's World (Kogan Page, London, 1993)

  9. Schwartz, P. The Art of the Long View: Planning for the Future in an Uncertain World (Doubleday, 1996)

    Google Scholar 

  10. Mearns, L. O. et al. in Climate Change 2001: The Physical Science Basis (eds Houghton, J. T., Ding, Y. & Griggs, D. J.) 739–768 (Cambridge Univ. Press, 2001)

    Google Scholar 

  11. Parson, E. A. et al. Global Change Scenarios: Their Development and Use (Sub-report 2.1B of Synthesis and Assessment Product 2.1, US Climate Change Science Program and the Subcommittee on Global Change Research, Department of Energy, Office of Biological & Environmental Research, Washington DC (2007)

    Google Scholar 

  12. Weyant, J. et al. in Climate Change 1995: Economic and Social Dimensions of Climate Change (eds Bruce, J. P., Lee, H. & Haites, E. F.) 367–398 (Cambridge Univ. Press, 1996)

    Google Scholar 

  13. Schneider, S. H. What is “dangerous” climate change? Nature 411, 17–19 (2001)

    Article  ADS  CAS  Google Scholar 

  14. Grubler, A. & Nakicenovic, N. Identifying dangers in an uncertain climate. Nature 412, 15 (2001)

    Article  ADS  CAS  Google Scholar 

  15. Pittock, A. B., Jones, R. N. & Mitchell, C. D. Probabilities will help us plan for climate change. Nature 413, 249 (2001)

    Article  ADS  CAS  Google Scholar 

  16. Carter, T. R. et al. General Guidelines on the Use of Scenario Data for Climate Impact and Adaptation Assessment (Task Group on Data and Scenario Support for Impact and Climate Assessment (TGICA), IPCC, Geneva, 2007)

    Google Scholar 

  17. Christensen, J. H. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S., Qin, D. & Manning, M.) 847–940 (Cambridge Univ. Press, 2007)

    Google Scholar 

  18. Carter, T. R. et al. in Climate Change 2001: Impacts, Adaptation and Vulnerability (eds McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J. & White, K. S.) 145–190 (Cambridge Univ. Press, 2001)

    Google Scholar 

  19. Malone, E. L. & Brenkert, A. L. in The Distributional Effects of Climate Change: Social and Economic Implications (eds Ruth, M. & Ibarraran, M.) 8–45 (Elsevier Science, 2009)

    Google Scholar 

  20. Gaffin, S. R., Rosenzweig, C., Xing, X. & Yetman, G. Downscaling and geo-spatial gridding of socio-economic projections from the IPCC Special Report on Emissions Scenarios (SRES). Glob. Environ. Change 14, 105–123 (2004)

    Article  Google Scholar 

  21. Grubler, A. et al. Regional, national, and spatially explicit scenarios of demographic and economic change based on SRES. Technol. Forecast. Soc. Change 74, 980–1029 (2006)

    Article  Google Scholar 

  22. Van Vuuren, D. P., Lucas, P. & Hilderink, H. Downscaling drivers of global environmental change. Enabling use of global SRES scenarios at the national and grid levels. Glob. Environ. Change 17, 114–130 (2007)

    Article  Google Scholar 

  23. Meadows, D. et al. The Limits to Growth (Universe Books, 1972)

    Google Scholar 

  24. Leontief, W. The Future of the World Economy: A Study on the Impact of Prospective Economic Issues and Policies on the International Development Strategy (United Nations, New York, 1976)

    Google Scholar 

  25. Herrera, A. et al. Catastrophe or New Society? A Latin American World Model (IDRC, Ottawa, 1976)

    Google Scholar 

  26. Mesarovic, M. & Pestel, E. Mankind at the Turning Point (Dutton, 1974)

    MATH  Google Scholar 

  27. Häfele, W., Anderer, J., McDonald, A. & Nakicenovic, N. Energy in a Finite World: Paths to a Sustainable Future (Ballinger, 1981)

    Google Scholar 

  28. Robertson, J. The Sane Alternative – A Choice of Futures (River Basin, 1983)

    Google Scholar 

  29. Svedin, U. & Aniansson, B. Surprising Futures: Notes From an International Workshop on Long-term World Development (Swedish Council for Planning and Coordination of Research, Stockholm, 1987)

    Google Scholar 

  30. Response Strategies Working Group. in Climate Change: The IPCC Scientific Assessment (eds Houghton, J. T., Jenkins, G. J. & Ephraums J. J.) 329–341 (Cambridge Univ. Press, 1990)

  31. Leggett, J., Pepper, W. J. & Swart, R. J. in Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment (eds Houghton, J. T., Callander, B. A. & Varney, S. K.) 69–95 (Cambridge Univ. Press, 1992)

    Google Scholar 

  32. Nakićenović, N. et al. eds. Special Report on Emissions Scenarios: A Special Report of Working Group III of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2000)

    Google Scholar 

  33. World Energy Outlook (International Energy Agency, Paris, 2009)

  34. Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Scenarios, Vol. 2 (eds Carpenter, S. R. et al.) xix–551 (Island Press, 2005)

  35. Alcamo, J. et al. in Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios (eds Houghton, J. T. et al.) 247–304 (Cambridge Univ. Press, 1995)

    Google Scholar 

  36. Carter, T. R. et al. in Climate Change 2007: Impacts, Adaptation and Vulnerability (eds Parry, M. L., Canziani, O. F., Palutikof, J. P., van der Linden, P. J. & Hanson, C. E.) 133–171 (Cambridge Univ. Press, 2007)

    Google Scholar 

  37. Hurtt, G. C. et al. Harmonization of global land-use scenarios for the period 1500-2100 for IPCC-AR5. iLEAPS Newsl. 7, 6–8 (2009)

    Google Scholar 

  38. Clarke, L. & Weyant, J. Introduction to the EMF Special Issue on climate change control scenarios. Energy Econ. 31, S63–S81 (2009)

    Article  Google Scholar 

  39. Huntingford, C. & Lowe, J. Overshoot scenarios and climate change. Science 316, 829 (2007)

    Article  Google Scholar 

  40. Wigley, T. M. L., Richels, R. & Edmonds, J. in Human-Induced Climate Change: An Interdisciplinary Perspective (eds Schlesinger, M. et al.) 84–92 (Cambridge Univ. Press, 2007)

    Book  Google Scholar 

  41. Calvin, K. et al. Limiting climate change to 450 ppm CO2 equivalent in the 21st century. Energy Econ. 31, S107–S120 (2009)

    Article  Google Scholar 

  42. Rao, S. et al. IMAGE and MESSAGE Scenarios Limiting GHG Concentration to Low Levels (IIASA Interim Report IR-08-020, International Institute for Applied Systems Analysis, Laxenburg, Austria, 2008)

    Google Scholar 

  43. Taylor, K. E., Stouffer, R. J. & Meehl, G. A. A summary of the CMIP5 experimental design. 〈http://cmip-pcmdi.llnl.gov/cmip5/experiment_design.html?submenuheader=1〉 (18 December 2009)

  44. Randall, D. A. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S., Qin, D. & Manning, M.) 589–662 (Cambridge Univ. Press, 2007)

    Google Scholar 

  45. Cox, P. M. et al. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000)

    Article  ADS  CAS  Google Scholar 

  46. Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: results from the (CMIP)-M-4 model intercomparison. J. Clim. 19, 3337–3353 (2006)

    Article  ADS  Google Scholar 

  47. van Vuuren, D. P. et al. Temperature increase of 21st century mitigation scenarios. Proc. Natl Acad. Sci. USA 105, 15258–15262 (2008)

    Article  ADS  CAS  Google Scholar 

  48. Clarke, L. et al. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations (Sub-report 2.1A of Synthesis and Assessment Product 2.1, US Climate Change Science Program and the Subcommittee on Global Change Research, Department of Energy, Office of Biological & Environmental Research, Washington DC, 2007)

    Google Scholar 

  49. Fisher, B. S. et al. in Climate Change 2007: Mitigation (eds Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. & Meyer, L. A.) 169–250 (Cambridge Univ. Press, 2007)

    Google Scholar 

  50. Weyant, J. et al. Report of 2.6 versus 2.9. Watts/m2 RCP evaluation panelhttp://www.ipcc.ch/meetings/session30/inf6.pdf〉 (31 March 2009)

    Google Scholar 

  51. Lamarque, J.-F. et al. Gridded emissions in support of IPCC AR5. IGAC Newsl. 41, 12–18 (2009)

    Google Scholar 

  52. Meehl, G. A. et al. Decadal prediction: can it be skillful? Bull. Am. Meteorol. Soc. 90, 1467–1485 (2009)

    Article  ADS  Google Scholar 

  53. Mitchell, T. D. Pattern scaling – an examination of the accuracy of the technique for describing future climates. Clim. Change 60, 217–242 (2003)

    Article  CAS  Google Scholar 

  54. Huntingford, C. & Cox, P. M. An analogue model to derive additional climate change scenarios from existing GCM simulations. Clim. Dyn. 16, 575–586 (2000)

    Article  Google Scholar 

  55. Rao, S. & Riahi, K. The role of non-CO2 greenhouse gases in climate change mitigation: Long-term scenarios for the 21st century. Multigas mitigation and climate policy. Energy J. 3 (Special Issue). 177–200 (2006)

    Google Scholar 

  56. Riahi, K., Gruebler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74, 887–935 (2007)

    Article  Google Scholar 

  57. Fujino, J. et al. Multigas mitigation analysis on stabilization scenarios using AIM global model. Multigas mitigation and climate policy. Energy J. 3 (Special Issue). 343–354 (2006)

    Google Scholar 

  58. Hijioka, Y., Matsuoka, Y., Nishimoto, H., Masui, M. & Kainuma, M. Global GHG emissions scenarios under GHG concentration stabilization targets. J. Glob. Environ. Eng. 13, 97–108 (2008)

    Google Scholar 

  59. Smith, S. J. & Wigley, T. M. L. Multi-gas forcing stabilization with the MiniCAM. Multigas mitigation and climate policy. Energy J. 3 (Special Issue). 373–391 (2006)

    Google Scholar 

  60. van Vuuren, D. P., Eickhout, B., Lucas, P. L. & den Elzen, M. G. J. Long-term multi-gas scenarios to stabilise radiative forcing — Exploring costs and benefits within an integrated assessment framework. Multigas mitigation and climate policy. Energy J. 3 (Special Issue). 201–234 (2006)

    Google Scholar 

  61. van Vuuren, D. P. et al. Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Clim. Change 81, 119–159 (2007)

    Article  ADS  Google Scholar 

  62. Manabe, S. & Wetherald, R. T. Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24, 241–259 (1967)

    Article  ADS  CAS  Google Scholar 

  63. Manabe, S. et al. A global ocean-atmosphere climate model: Part I. The atmospheric circulation. J. Phys. Oceanogr. 5, 3–29 (1975)

    Article  ADS  Google Scholar 

  64. Arrhenius, S. On the influence of carbonic acid in the air upon the temperature of the ground. Lond. Edinb. Dublin Phil. Mag. J. Sci. (5th ser.) 41, 237–275 (1896)

    CAS  Google Scholar 

  65. Keeling, C. D. The concentration and isotopic abundance of carbon dioxide in the atmosphere. Tellus 12, 200–203 (1960)

    Article  ADS  Google Scholar 

  66. Hansen, J. et al. Global climate changes as forecast by Goddard Institute for Space Studies three-dimensional model. J. Geophys. Res. 93, 9341–9364 (1988)

    Article  ADS  CAS  Google Scholar 

  67. WMO/UNEP/ICSU. Report of the Study Conference on Sensitivity of Ecosystems and Society to Climate Change (WCP-83, UNESCO, Geneva, 1984)

  68. WMO/UNEP/ICSU. Report of the International Conference on the Assessment of the Role of Carbon Dioxide and of other Greenhouse Gases in Climate Variations and Associated Impacts (WMO No. 661, UNESCO, Geneva, 1986)

  69. Carter, T. R., Parry, M. L. & Porter, J. H. Climatic change and future agroclimatic potential in Europe. Int. J. Climatol. 11, 251–269 (1991)

    Article  Google Scholar 

  70. Carter, T. R., Parry, M. L., Harasawa, H. & Nishioka, S. eds. IPCC Technical Guidelines for Assessing Climate Change Impacts and Adaptations (Dept of Geography, University College London, UK, and Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan, 1994)

    Google Scholar 

  71. Hulme, M., Raper, S. C. B. & Wigley, T. M. L. An integrated framework to address climate change (ESCAPE) and further developments of the global and regional climate modules (MAGICC). Energy Policy 23, 347–355 (1995)

    Article  Google Scholar 

  72. Melillo, J. M. et al. Vegetation/Ecosystem Modeling and Analysis Project (VEMAP): comparing biogeography and biogeochemistry models in a continental-scale study of terrestrial ecosystem responses to climate change and CO2 doubling. Glob. Biogeochem. Cycles 9, 407–437 (1995)

    Article  ADS  Google Scholar 

  73. Smith, J. B. et al. eds. Vulnerability and Adaptation to Climate Change. Interim Results from the U.S. Country Studies Program (Kluwer Academic, 1996)

    Book  Google Scholar 

  74. Nakićenović, N., Victor, N. & Morita, T. Emissions scenarios database and review of scenarios. Mitig. Adapt. Strategies Glob. Change 3, 95–120 (1998)

    Article  Google Scholar 

  75. Watson, R. T., Zinyowera, M. C. & Moss, R. H. eds. The Regional Impacts of Climate Change: An Assessment of Vulnerability (Cambridge Univ. Press, 1998)

    Google Scholar 

  76. Carter, T. R. et al. Climate Change in the 21st Century – Interim Characterizations Based on the New IPCC Emissions Scenarios (The Finnish Environment 433, Finnish Environment Institute, Helsinki, 2000)

    Google Scholar 

  77. Morita, T. et al. in Climate Change 2001: Mitigation (eds Metz, B., Davidson, O., Swart, R. & Pan J.) 115–166 (Cambridge Univ. Press, 2007)

    Google Scholar 

  78. United Kingdom Climate Impacts Programme. Socio-economic Scenarios for Climate Change Impact Assessment: A Guide to Their Use in the UK Climate Impacts Programme (United Kingdom Climate Impacts Programme, Oxford, 2001)

  79. Ruosteenoja, K., Carter, T. R., Jylhä, K. & Tuomenvirta, H. Future Climate in World Regions: An Intercomparison of Model-based Projections for the New IPCC Emissions Scenarios (The Finnish Environment 644, Finnish Environment Institute, Helsinki, 2003)

    Google Scholar 

  80. Weyant, J. P., De La Chesnaye, C. F. & Blenford, J. Overview of EMF21: multi-greenhouse gas mitigation and climate policy. Energy J. 27 (Special Issue). 1–33 (2006)

    Google Scholar 

  81. Murphy, J. M. et al. UK Climate Projections Science Report: Climate Change Projections (Met Office Hadley Centre, Exeter, UK, 2009)

    Google Scholar 

  82. van der Linden, P. & Mitchell, J. F. B. eds. ENSEMBLES: Climate Change and its Impacts: Summary of research and results from the ENSEMBLES project (Met Office Hadley Centre, Exeter, UK, 2009)

    Google Scholar 

  83. U.S. Climate Change Science Program. Strategic Plan for the Climate Change Science Program, Final Report (eds Subcommittee on Global Change Research) Figure 2.5 19 (US Climate Change Science Program, Washington DC, 2003)

  84. Le Treut, H. et al. in Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 93–127 (Cambridge Univ. Press, 2007)

    Google Scholar 

  85. Ahmad, Q. K. et al. in Climate Change 2001: Impacts, Adaptation and Vulnerability (eds McCarthy, J. J., Canziani, O. F., Leary, N. A., Dokken, D. J. & White, K. S.) 105–143 (Cambridge Univ. Press, 2001)

    Google Scholar 

  86. US Department of Energy. Science Challenges and Future Directions: Climate Change Integrated Assessment Research (Report of the Workshop on Integrated Assessment, November 2008, US Department of Energy, Office of Science, Washington DC, 2009)

  87. van Vuuren, D. P. & Riahi, K. Do recent emission trends imply higher emissions forever? Clim. Change 91, 237–248 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the following individuals for their contributions: L. Arris, M. Babiker, F. Birol, P. Bosch, O. Boucher, S. Brinkman, E. Calvo, I. Elgizouli, L. Erda, J. Feddema, A. Garg, A. Gaye, M. Ibarraran, E. La Rovere, B. Metz, R. Jones, J. Kelleher, J. F. Lamarque, B. Matthews, L. Meyer, B. O’Neill, S. Nishioka, R. Pichs, H. Pitcher, P. Runci, D. Shindell, P. R. Shukla, A. Snidvongs, P. Thornton, J. P. van Ypersele, V. Vilariño and M. Zurek.

Author Contributions R.H.M. is coordinating lead author of the paper. J.A.E., K.A.H., M.R.M., S.K.R. and D.P.v.V. are principal co-authors of the paper. All others are co-authors. Authors are drawn from the integrated assessment modelling and climate modelling communities, and from the impacts, adaptation and vulnerability research communities; all contributed important inputs to the process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard H. Moss.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This supplementary file contains an expanded version of the timeline ‘some notable developments and international applications of scenarios in climate research’ which is shown in figure 1 of the main paper and Supplementary References. (PDF 204 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moss, R., Edmonds, J., Hibbard, K. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010). https://doi.org/10.1038/nature08823

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature08823

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing