Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Battery materials for ultrafast charging and discharging

Abstract

The storage of electrical energy at high charge and discharge rate is an important technology in today’s society, and can enable hybrid and plug-in hybrid electric vehicles and provide back-up for wind and solar energy. It is typically believed that in electrochemical systems very high power rates can only be achieved with supercapacitors, which trade high power for low energy density as they only store energy by surface adsorption reactions of charged species on an electrode material1,2,3. Here we show that batteries4,5 which obtain high energy density by storing charge in the bulk of a material can also achieve ultrahigh discharge rates, comparable to those of supercapacitors. We realize this in LiFePO4 (ref. 6), a material with high lithium bulk mobility7,8, by creating a fast ion-conducting surface phase through controlled off-stoichiometry. A rate capability equivalent to full battery discharge in 10–20 s can be achieved.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of LiFeP 0.9 P 0.95 O 4- δ synthesized under argon.
Figure 2: Phosphorus 2 p X-ray photoelectron spectra from three different compounds.
Figure 3: Discharge rate capability and capacity retention for LiFe 0.9 P 0.95 O 4- δ synthesized at 600 °C.
Figure 4: Discharge capability at very high rate for LiFe 0.9 P 0.95 O 4- δ synthesized at 600 °C.

References

  1. Conway, B. E. Transition from supercapacitor to battery behavior in electrochemical energy-storage. J. Electrochem. Soc. 138, 1539–1548 (1991)

    Article  CAS  Google Scholar 

  2. Arico, A. S., Bruce, P., Scrosati, B., Tarascon, J. M. & Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nature Mater. 4, 366–377 (2005)

    Article  ADS  CAS  Google Scholar 

  3. Amatucci, G. G., Badway, F., Du Pasquier, A. & Zheng, T. An asymmetric hybrid nonaqueous energy storage cell. J. Electrochem. Soc. 148, A930–A939 (2001)

    Article  CAS  Google Scholar 

  4. Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Reed, J. & Ceder, G. Role of electronic structure in the susceptibility of metastable transition-metal oxide structures to transformation. Chem. Rev. 104, 4513–4533 (2004)

    Article  CAS  Google Scholar 

  6. Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997)

    Article  CAS  Google Scholar 

  7. Islam, M. S., Driscoll, D. J., Fisher, C. A. J. & Slater, P. R. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 17, 5085–5092 (2005)

    Article  CAS  Google Scholar 

  8. Morgan, D., Van der Ven, A. & Ceder, G. Li conductivity in LixMPO4 (M = Mn, Fe, Co, Ni) olivine materials. Electrochem. Solid State Lett. 7, A30–A32 (2004)

    Article  CAS  Google Scholar 

  9. Chung, S. Y., Bloking, J. T. & Chiang, Y. M. Electronically conductive phospho-olivines as lithium storage electrodes. Nature Mater. 1, 123–128 (2002)

    Article  ADS  CAS  Google Scholar 

  10. Ravet, N. C. Y., Magnan, J. F., Besner, S., Gauthier, M. & Armand, M. Electroactivity of natural and synthetic triphylite. J. Power Sources 97–8, 503–507 (2001)

    Article  Google Scholar 

  11. Herle, P. S., Ellis, B., Coombs, N. & Nazar, L. F. Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Mater. 3, 147–152 (2004)

    Article  ADS  CAS  Google Scholar 

  12. Delacourt, C., Poizot, P., Levasseur, S. & Masquelier, C. Size effects on carbon-free LiFePO4 powders. Electrochem. Solid State Lett. 9, A352–A355 (2006)

    Article  CAS  Google Scholar 

  13. Kim, D. H. & Kim, J. Synthesis of LiFePO4 nanoparticles in polyol medium and their electrochemical properties. Electrochem. Solid State Lett. 9, A439–A442 (2006)

    Article  CAS  Google Scholar 

  14. Chen, G. Y., Song, X. Y. & Richardson, T. J. Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid State Lett. 9, A295–A298 (2006)

    Article  CAS  Google Scholar 

  15. Wang, B., Kwak, B. S., Sales, B. C. & Bates, J. B. Ionic conductivities and structure of lithium phosphorus oxynitride glasses. J. Non-Cryst. Solids 183, 297–306 (1995)

    Article  ADS  CAS  Google Scholar 

  16. Sayer, M. & Mansingh, A. Transport properties of semiconducting phosphate glasses. Phys. Rev. B 6, 4629–4643 (1972)

    Article  ADS  CAS  Google Scholar 

  17. Mogus-Milankovic, A., Santic, A., Karbulut, M. & Day, D. E. Study of electrical properties of MoO3-Fe2O3-P2O5 and SrO-Fe2O3-P2O5 glasses by impedance spectroscopy. II. J. Non-Cryst. Solids 330, 128–141 (2003)

    Article  ADS  CAS  Google Scholar 

  18. Zhou, H. S., Li, D. L., Hibino, M. & Honma, I. A self-ordered, crystalline-glass, mesoporous nanocomposite for use as a lithium-based storage device with both high power and high energy densities. Angew. Chem. Int. Edn Engl. 44, 797–802 (2005)

    Article  CAS  Google Scholar 

  19. Ong, S. P., Wang, L., Kang, B. & Ceder, G. Li-Fe-P-O2 phase diagram from first principles calculations. Chem. Mater. 20, 1798–1807 (2008)

    Article  CAS  Google Scholar 

  20. Martin, S. W. Ionic-conduction in phosphate-glasses. J. Am. Ceram. Soc. 74, 1767–1784 (1991)

    Article  CAS  Google Scholar 

  21. Sobha, K. C. & Rao, K. J. Investigation of phosphate glasses with the general formula AxByP3O12 where A = Li, Na or K and B = Fe, Ga, Ti, Ge, V or Nb. J. Non-Cryst. Solids 201, 52–65 (1996)

    Article  ADS  CAS  Google Scholar 

  22. Kim, D.-K. et al. Effect of synthesis conditions on the properties of LiFePO4 for secondary lithium batteries. J. Power Sources 159, 237–240 (2006)

    Article  ADS  Google Scholar 

  23. Ellis, B. et al. Nanostructured materials for lithium-ion batteries: Surface conductivity vs. bulk ion/electron transport. Faraday Discuss. 134, 119–141 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Rho, Y. H., Nazar, L. F., Perry, L. & Ryan, D. Surface chemistry of LiFePO4 studied by Mossbauer and X-ray photoelectron spectroscopy and its effect on electrochemical properties. J. Electrochem. Soc. 154, A283–A289 (2007)

    Article  CAS  Google Scholar 

  25. Padhi, A. K., Nanjundaswamy, K. S., Masquelier, C., Okada, S. & Goodenough, J. B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. J. Electrochem. Soc. 144, 1609–1613 (1997)

    Article  CAS  Google Scholar 

  26. Morgan, W. E., Stec, W. J. & Vanwazer, J. R. Inner-orbital photoelectron spectroscopy of alkali-metal halides, perchlorates, phosphates, and pyrophosphates. J. Am. Chem. Soc. 95, 751–755 (1973)

    Article  CAS  Google Scholar 

  27. Okubo, M. et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 129, 7444–7452 (2007)

    Article  CAS  Google Scholar 

  28. Wang, L., Zhou, F., Meng, Y. S. & Ceder, G. First-principles study of surface properties of LiFePO4: Surface energy, structure, Wulff shape, and surface redox potential. Phys. Rev. B 76, 165435 (2007)

    Article  ADS  Google Scholar 

  29. Dominko, R., Gaberscek, M., Bele, A., Mihailovic, D. & Jamnik, J. Carbon nanocoatings on active materials for Li-ion batteries. J. Eur. Ceram. Soc. 27, 909–913 (2007)

    Article  CAS  Google Scholar 

  30. Gaberscek, M., Dominko, R., Bele, M., Remskar, M. & Jamnik, J. Mass and charge transport in hierarchically organized storage materials. Example: Porous active materials with nanocoated walls of pores. Solid State Ionics 177, 3015–3022 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.K. thanks D. S. Yun and Y. Zhang for the help with transmission electron microscope measurements and K. Kang and Y. S. Meng for experimental help and discussions. Support from the US National Science Foundation through the Materials Research Science and Engineering Centers programme and the Batteries for Advanced Transportation Program of the US Department of Energy is gratefully acknowledged.

Author Contributions B.K. performed the experiments and G.C. supervised and analysed the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerbrand Ceder.

Supplementary information

Supplementary Information

This file contains Supplementary Notes, Supplementary Figures S1-S6 with Legends, Supplementary Table 1, Supplementary Methods and Supplementary References. (PDF 620 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, B., Ceder, G. Battery materials for ultrafast charging and discharging. Nature 458, 190–193 (2009). https://doi.org/10.1038/nature07853

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature07853

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing