Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Integrative genome-wide association analysis of cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders

Abstract

Cytoarchitectural abnormalities have been described in the prefrontal cortex (PFC) of subjects with psychiatric disorders. We explored the possible genetic causalities that may underlie the cytoarchitectural abnormalities of calbindin-containing γ-aminobutyric acid (GABA)ergic neurons and perineuronal oligodendrocytes in the PFC of subjects with psychiatric disorders by converging results from genome-wide single-nucleotide polymorphism (SNP) scans for the traits and expression SNP (eSNP) associations. In the initial genome-wide scans, we identified several development- and apoptosis-related genes associated with the cytoarchitectural traits. Moreover, the susceptibility gene for bipolar disorder, PPP2R2C, was found to be associated with the number of perineuronal oligodendrocytes. Further eSNP analyses indicated that two novel candidate genes, RAB2A and SLC38A1, were associated with the density of calbindin-positive neurons and the number of perineuronal oligodendrocytes, respectively. Our findings may provide novel insights into the genetic causalities associated with cytoarchitectural abnormalities in the PFC of subjects with major psychiatric disorders as well as into the etiology of such disorders.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Beasley CL, Zhang ZJ, Patten I, Reynolds GP . Selective deficits in prefrontal cortical GABAergic neurons in schizophrenia defined by the presence of calcium-binding proteins. Biol Psychiatry 2002; 52: 708–715.

    Article  CAS  Google Scholar 

  2. Vostrikov VM, Uranova NA, Orlovskaya DD . Deficit of perineuronal oligodendrocytes in the prefrontal cortex in schizophrenia and mood disorders. Schizophr Res 2007; 94: 273–280.

    Article  Google Scholar 

  3. Kim S, Webster MJ . Correlation analysis between genome-wide expression profiles and cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol Psychiatry 2010; 15: 326–336.

    Article  CAS  Google Scholar 

  4. Raedler TJ, Knable MB, Weinberger DR . Schizophrenia as a developmental disorder of the cerebral cortex. Curr Opin Neurobiol 1998; 8: 157–161.

    Article  CAS  Google Scholar 

  5. Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V et al. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull 2001; 55: 597–610.

    Article  CAS  Google Scholar 

  6. Rosen GD, Williams RW . Complex trait analysis of the mouse striatum: independent QTLs modulate volume and neuron number. BMC Neurosci 2001; 2: 5.

    Article  CAS  Google Scholar 

  7. Dixon AL, Liang L, Moffatt MF, Chen W, Heath S, Wong KC et al. A genome-wide association study of global gene expression. Nat Genet 2007; 39: 1202–1207.

    Article  CAS  Google Scholar 

  8. Myers AJ, Gibbs JR, Webster JA, Rohrer K, Zhao A, Marlowe L et al. A survey of genetic human cortical gene expression. Nat Genet 2007; 39: 1494–1499.

    Article  CAS  Google Scholar 

  9. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP, Beazley C et al. Population genomics of human gene expression. Nat Genet 2007; 39: 1217–1224.

    Article  CAS  Google Scholar 

  10. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J et al. Genetics of gene expression and its effect on disease. Nature 2008; 452: 423–428.

    Article  CAS  Google Scholar 

  11. Kim S, Choi KH, Baykiz AF, Gershenfeld HK . Suicide candidate genes associated with bipolar disorder and schizophrenia: an exploratory gene expression profiling analysis of post-mortem prefrontal cortex. BMC Genomics 2007; 8: 413.

    Article  Google Scholar 

  12. Higgs BW, Elashoff M, Richman S, Barci B . An online database for brain disease research. BMC Genomics 2006; 7: 70.

    Article  Google Scholar 

  13. Torrey EF, Webster M, Knable M, Johnston N, Yolken RH . The Stanley Foundation brain collection and Neuropathology Consortium. Schizophr Res 2000; 44: 151–155.

    Article  CAS  Google Scholar 

  14. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  Google Scholar 

  15. Barrett JC, Fry B, Maller J, Daly MJ . Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 2005; 21: 263–265.

    Article  CAS  Google Scholar 

  16. Le-Niculescu H, Patel SD, Bhat M, Kuczenski R, Faraone SV, Tsuang MT et al. Convergent functional genomics of genome-wide association data for bipolar disorder: comprehensive identification of candidate genes, pathways and mechanisms. Am J Med Genet B Neuropsychiatr Genet 2009; 150B: 155–181.

    Article  CAS  Google Scholar 

  17. Adeyemo A, Gerry N, Chen G, Herbert A, Doumatey A, Huang H et al. A genome-wide association study of hypertension and blood pressure in African Americans. PLoS Genet 2009; 5: e1000564.

    Article  Google Scholar 

  18. Beecham GW, Martin ER, Li YJ, Slifer MA, Gilbert JR, Haines JL et al. Genome-wide association study implicates a chromosome 12 risk locus for late-onset Alzheimer disease. Am J Hum Genet 2009; 84: 35–43.

    Article  CAS  Google Scholar 

  19. Chen R, Morgan AA, Dudley J, Deshpande T, Li L, Kodama K et al. FitSNPs: highly differentially expressed genes are more likely to have variants associated with disease. Genome Biol 2008; 9: R170.

    Article  Google Scholar 

  20. Johnson WE, Li C, Rabinovic A . Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007; 8: 118–127.

    Article  Google Scholar 

  21. Preece P, Cairns NJ . Quantifying mRNA in postmortem human brain: influence of gender, age at death, postmortem interval, brain pH, agonal state and inter-lobe mRNA variance. Brain Res Mol Brain Res 2003; 118: 60–71.

    Article  CAS  Google Scholar 

  22. Spielman RS, Bastone LA, Burdick JT, Morley M, Ewens WJ, Cheung VG . Common genetic variants account for differences in gene expression among ethnic groups. Nat Genet 2007; 39: 226–231.

    Article  CAS  Google Scholar 

  23. Gauderman WJ . Sample size requirements for association studies of gene-gene interaction. Am J Epidemiol 2002; 155: 478–484.

    Article  Google Scholar 

  24. Heinzen EL, Ge D, Cronin KD, Maia JM, Shianna KV, Gabriel WN et al. Tissue-specific genetic control of splicing: implications for the study of complex traits. PLoS Biol 2008; 6: e1.

    Article  Google Scholar 

  25. Flint J . Analysis of quantitative trait loci that influence animal behavior. J Neurobiol 2003; 54: 46–77.

    Article  CAS  Google Scholar 

  26. Mangahas PM, Yu X, Miller KG, Zhou Z . The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditis elegans. J Cell Biol 2008; 180: 357–373.

    Article  CAS  Google Scholar 

  27. Short B, Preisinger C, Korner R, Kopajtich R, Byron O, Barr FA . A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. J Cell Biol 2001; 155: 877–883.

    Article  CAS  Google Scholar 

  28. Melone M, Quagliano F, Barbaresi P, Varoqui H, Erickson JD, Conti F . Localization of the glutamine transporter SNAT1 in rat cerebral cortex and neighboring structures, with a note on its localization in human cortex. Cereb Cortex 2004; 14: 562–574.

    Article  Google Scholar 

  29. Ozawa S, Kamiya H, Tsuzuki K . Glutamate receptors in the mammalian central nervous system. Prog Neurobiol 1998; 54: 581–618.

    Article  CAS  Google Scholar 

  30. Stout AK, Raphael HM, Kanterewicz BI, Klann E, Reynolds IJ . Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1998; 1: 366–373.

    Article  CAS  Google Scholar 

  31. Duchen MR . Mitochondria and calcium: from cell signalling to cell death. J Physiol 2000; 529 (Part 1): 57–68.

    Article  CAS  Google Scholar 

  32. Karadottir R, Cavelier P, Bergersen LH, Attwell D . NMDA receptors are expressed in oligodendrocytes and activated in ischaemia. Nature 2005; 438: 1162–1166.

    Article  CAS  Google Scholar 

  33. Salter MG, Fern R . NMDA receptors are expressed in developing oligodendrocyte processes and mediate injury. Nature 2005; 438: 1167–1171.

    Article  CAS  Google Scholar 

  34. McDonald JW, Althomsons SP, Hyrc KL, Choi DW, Goldberg MP . Oligodendrocytes from forebrain are highly vulnerable to AMPA/kainate receptor-mediated excitotoxicity. Nat Med 1998; 4: 291–297.

    Article  CAS  Google Scholar 

  35. Borsotto M, Cavarec L, Bouillot M, Romey G, Macciardi F, Delaye A et al. PP2A-Bgamma subunit and KCNQ2 K+ channels in bipolar disorder. Pharmacogenomics J 2007; 7: 123–132.

    Article  CAS  Google Scholar 

  36. Uranova NA, Vostrikov VM, Vikhreva OV, Zimina IS, Kolomeets NS, Orlovskaya DD . The role of oligodendrocyte pathology in schizophrenia. Int J Neuropsychopharmacol 2007; 10: 537–545.

    Article  CAS  Google Scholar 

  37. Carter CJ . eIF2B and oligodendrocyte survival: where nature and nurture meet in bipolar disorder and schizophrenia? Schizophr Bull 2007; 33: 1343–1353.

    Article  Google Scholar 

  38. Hakak Y, Walker JR, Li C, Wong WH, Davis KL, Buxbaum JD et al. Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proc Natl Acad Sci USA 2001; 98: 4746–4751.

    Article  CAS  Google Scholar 

  39. Katsel P, Davis KL, Haroutunian V . Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr Res 2005; 79: 157–173.

    Article  Google Scholar 

  40. Tkachev D, Mimmack ML, Ryan MM, Wayland M, Freeman T, Jones PB et al. Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet 2003; 362: 798–805.

    Article  CAS  Google Scholar 

  41. Cheung VG, Spielman RS, Ewens KG, Weber TM, Morley M, Burdick JT . Mapping determinants of human gene expression by regional and genome-wide association. Nature 2005; 437: 1365–1369.

    Article  CAS  Google Scholar 

  42. Huffaker SJ, Chen J, Nicodemus KK, Sambataro F, Yang F, Mattay V et al. A primate-specific, brain isoform of KCNH2 affects cortical physiology, cognition, neuronal repolarization and risk of schizophrenia. Nat Med 2009; 15: 509–518.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the investigators generating original data in the SMRIDB, in particular Drs Natalya Uranova, Gavin Reynolds, Anthony Altar, Sabine Bahn, Tadafumi Kato and Chunyu Liu, along with their many collaborators, who made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Webster, M. Integrative genome-wide association analysis of cytoarchitectural abnormalities in the prefrontal cortex of psychiatric disorders. Mol Psychiatry 16, 452–461 (2011). https://doi.org/10.1038/mp.2010.23

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.23

Keywords

This article is cited by

Search

Quick links