Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Multiple Myeloma, Gammopathies

Hyperhaploidy is a novel high-risk cytogenetic subgroup in multiple myeloma

Abstract

Hyperhaploid clones (24–34 chromosomes) were identified in 33 patients with multiple myeloma (MM), demonstrating a novel numerical cytogenetic subgroup. Strikingly, all hyperhaploid karyotypes were found to harbor monosomy 17p, the single most important risk stratification lesion in MM. A catastrophic loss of nearly a haploid set of chromosomes results in disomies of chromosomes 3, 5, 7, 9, 11, 15, 18, 19 and 21, the same basic set of odd-numbered chromosomes found in trisomy in hyperdiploid myeloma. All other autosomes are found in monosomy, resulting in additional clinically relevant monosomies of 1p, 6q, 13q and 16q. Hypotriploid subclones (58–68 chromosomes) were also identified in 11 of the 33 patients and represent a duplication of the hyperhaploid clone. Analysis of clones utilizing interphase fluorescence in situ hybridization (iFISH), metaphase FISH and spectral karyotyping identified either monosomy 17 or del17p in all patients. Amplification of 1q21 was identified in eight patients, demonstrating an additional high-risk marker. Importantly, our findings indicate that current iFISH strategies may be uninformative or ambiguous in the detection of these clones, suggesting this patient subgroup maybe underreported. Overall survival for patients with hyperhaploid clones was poor, with a 5-year survival rate of 23.1%. These findings identify a distinct numerical subgroup with cytogenetically defined high-risk disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Morgan GJ, Walker BA, Davies FE . The genetic architecture of multiple myeloma. Nat Rev Cancer 2012; 12: 335–348.

    Article  CAS  PubMed  Google Scholar 

  2. Smadja NV, Bastard C, Brigaudeau C, Leroux D, Fruchart C, Groupe Français de Cytogénétique Hématologique. Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 2001; 98: 2229–2238.

    Article  CAS  PubMed  Google Scholar 

  3. Bergsagle PL, Chesi M . Molecular classification and risk stratification of myeloma. Hematol Oncol 2013; 31 (Suppl 1): 38–41.

    Article  Google Scholar 

  4. Shaffer LG, McGowan-Jordan J, Schmid M (eds). ISCN (2013): An International System for Human Cytogenetic Nomenclature. S. Kager: Basel, 2013; pp 88–95.

  5. Mandahl N, Johansson B, Mertens F, Mitelman F . Disease-associated patterns of disomic chromosomes in hyperhaploid neoplasms. Genes Chrom Cancer 2012; 51: 536–544.

    Article  CAS  PubMed  Google Scholar 

  6. Pantou D, Rizou H, Tsarouha H, Pouli A, Papanastasiou K, Stamatellou M et al. Cytogenetic manifestations of multiple myeloma heterogeneity. Genes Chromosomes Cancer 2005; 42: 44–57.

    Article  CAS  PubMed  Google Scholar 

  7. Mohamed AN, Bentley G, Bonnett ML, Zonder J, Al-Katib A . Chromosome aberrations in a series of 120 multiple myeloma cases with abnormal karyotypes. Am J Hematol 2007; 82: 1080–1087.

    Article  PubMed  Google Scholar 

  8. Gabrea A, Martelli ML, Qi Y, Roschke A, Barlogie B, Shaughnessy JD Jr et al. Secondary genomic rearrangements involving immunoglobulin or MYC loci show similar prevalences in hyperdiploid and nonhyperdiploid myeloma tumors. Genes Chromosomes Cancer 2008; 47: 573–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sawyer JR, Tian E, Thomas E, Koller M, Stangeby C, Sammartino G et al. Evidence for a novel mechanism for gene amplification in multiple myeloma: 1q12 pericentromeric heterochromatin mediates breakage-fusion-bridge cycles of a 1q12-23 amplicon. Br J Haematol 2009; 147: 484–494.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hoctor VT, Campbell LJ . Hyperhaploid plasma cell myeloma. Cancer Genet 2012; 205: 414–418.

    Article  CAS  PubMed  Google Scholar 

  11. Harrison C, Johansson B Acute lymphoblastic leukemia. In: Heim S, Mitelman F (eds). Cancer Cytogenetics, 3rd edn . Chapter 9. Wiley-Blackwell: Hoboken, NJ, 2009; pp 233–296.

    Google Scholar 

  12. Fonseca R, Bergsagel PL, Drach J, Shaughnessy J, Gutierrez N, Stewart AK et al. International Myeloma Working Group molecular classification of multiple myeloma: spotlight review. Leukemia 2009; 23: 2210–2221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Avet-Loiseau H, Li C, Magrangeas F, Gouraud W, Charbonnel C, Harousseau JL et al. Prognostic significance of copy-number alterations in multiple myeloma. J Clin Oncol 2009; 27: 4585–4590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boyd KD, Ross FM, Chiecchio L, Dagrada GP, Konn ZJ, Tapper WJ et al. A novel prognostic model in myeloma based on co-segregating adverse FISH lesions and the ISS: analysis of patients treated in the MRC Myeloma IX trial. Leukemia 2012; 26: 349–355.

    Article  CAS  PubMed  Google Scholar 

  15. Mikhael JR, Dingli D, Roy V, Reeder CB, Buadi FK, Hayman SR et al. Management of newly diagnosed symptomatic multiple myeloma: updated Mayo Stratification of Myeloma and Risk-Adapted Therapy (mSMART) consensus guidelines 2013. Mayo Clin Proc 2013; 88: 360–376.

    Article  PubMed  Google Scholar 

  16. Avet-Loiseau H, Durie BG, Cavo M, Attal M, Gutierrez N, Haessler J et al. Combining fluorescent in situ hybridization data with ISS staging improves risk assessment in myeloma: an International Myeloma Working Group collaborative project. Leukemia 2013; 27: 711–717.

    Article  CAS  PubMed  Google Scholar 

  17. Chng WJ, Dispenzieri A, Chim CS, Fonseca R, Goldschmidt H, Lentzsch S et al. IMWG consensus on risk stratification in multiple myeloma. Leukemia 2014; 28: 269–277.

    Article  CAS  PubMed  Google Scholar 

  18. Tian E, Sawyer JR, Heuck CJ, Zhang Q, van Rhee F, Barlogie B et al. In multiple myeloma, 14q32 translocations are nonrandom chromosomal fusions driving high expression levels of the respective partner genes. Genes Chrom Cancer 2014; 53: 549–557.

    Article  CAS  PubMed  Google Scholar 

  19. Sawyer JR, Lukacs JL, Munshi N, Desikan KR, Singhal S, Mehta J et al. Identification of new nonrandom translocations in multiple myeloma with multicolor spectral karyotyping. Blood 1998; 92: 4269–4278.

    CAS  PubMed  Google Scholar 

  20. Kaplan EL, Meier P . Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958; 53: 457–481.

    Article  Google Scholar 

  21. Barlogie B, Anaissie E, van Rhee F, Haessler J, Hollmig K, Pineda-Roman M et al. Incorporating bortezomib into upfront treatment for multiple myeloma: early results of total therapy 3. Br J Haematol 2007; 138: 176–185.

    Article  CAS  PubMed  Google Scholar 

  22. Barlogie B, Mitchell A, van Rhee F, Epstein J, Morgan GJ, Crowley J . Curing myeloma at last: defining criteria and providing the evidence. Blood 2014; 124: 3043–3051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shaughnessy JD, Zhan F, Burington BE, Huang Y, Colla S, Hanamura I et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007; 109: 2276–2284.

    Article  CAS  PubMed  Google Scholar 

  24. van Buuren S, GroothuIs-Oudshoorn K . Mice: multivariate imputation by chained equations in R. J Stat Softw 2011; 45: 1–67.

    Google Scholar 

  25. Ross FM, Avet-Loiseau H, Ameye G, Gutiérrez NC, Liebisch P, O'Connor S et al. European Myeloma Network. Report from the European Myeloma Network on interphase FISH in multiple myeloma and related disorders. Haematologica 2012; 97: 1272–1277.

    Article  PubMed  PubMed Central  Google Scholar 

  26. An G, Li Z, Tai YT, Acharya C, Li Q, Qin X et al. The impact of clone size on the prognostic value of chromosome aberrations by fluorescence in situ hybridization in multiple myeloma. Clin Cancer Res 2015; 21: 2148–2156.

    Article  PubMed  Google Scholar 

  27. Gordon DJ, Resio B, Pellman D . Causes and consequences of aneuploidy in cancer. Nat Rev Genet 2012; 13: 189–203.

    Article  CAS  PubMed  Google Scholar 

  28. Krem MM, Press OW, Horwitz MS, Tidwell T . Mechanisms and clinical applications of chromosomal instability in lymphoid malignancy. Br J Haematol 2015; 171: 13–28.

    Article  CAS  PubMed  Google Scholar 

  29. Chng WJ, Ahmann GJ, Henderson K, Santana-Davila R, Greipp PR, Gertz MA et al. Clinical implication of centrosome amplification in plasma cell neoplasm. Blood 2006; 107: 3669–3675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Safavi S, Forestier E, Golovleva I, Barbany G, Nord KH, Moorman AV et al. Loss of chromosomes is the primary event in near-haploid and low-hypodiploid acute lymphoblastic leukemia. Leukemia 2013; 27: 248–250.

    Article  CAS  PubMed  Google Scholar 

  31. Paulsson K, Morse H, Fioretos T, Behrendtz M, Strombeck B, Johansson B . Evidence for a single-step mechanism in the origin of hyperdiploid childhood acute lymphoblastic leukemia. Genes Chrom Cancer 2005; 44: 113–122.

    Article  CAS  PubMed  Google Scholar 

  32. Magrangeas F, Avet-Loiseau H, Gouraud W, Lodé L, Decaux O, Godmer P et al. Minor clone provides a reservoir for relapse in multiple myeloma. Leukemia 2013; 27: 473–481.

    Article  CAS  PubMed  Google Scholar 

  33. Corre J, Munshi N, Avet-Loiseau H . Genetics of multiple myeloma: another heterogeneity level? Blood 2015; 12: 1870–1876.

    Article  Google Scholar 

  34. Avet-Loiseau H, Soulier J, Fermand JP, Yakoub-Agha I, Attal M, Hulin C et al. Impact of high-risk cytogenetics and prior therapy on outcomes in patients with advanced relapsed or refractory multiple myeloma treated with lenalidomide plus dexaméthasone. Leukemia 2010; 24: 623–628.

    Article  CAS  PubMed  Google Scholar 

  35. Avet-Loiseau H, Attal M, Campion L, Caillot D, Hulin C, Marit G et al. Long-term analysis of the IFM 99 trials for myeloma: cytogenetic abnormalities [t(4;14), del(17p), 1q gains] play a major role in defining long-term survival. J Clin Oncol 2012; 30: 1949–1952.

    Article  PubMed  Google Scholar 

  36. Stark B, Jeison M, Gobuzov R, Krug H, Glaser-Gabay L, Luria D et al. Near haploid childhood acute lymphoblastic leukemia masked by hyperdiploid line: detection by fluorescence in situ hybridization. Cancer Genet Cytogenet 2001; 128: 108–113.

    Article  CAS  PubMed  Google Scholar 

  37. Chang H, Jiang A, Qi C, Trieu Y, Chen C, Reece D . Impact of genomic aberrations including chromosome 1 abnormalities on the outcome of patients with relapsed or refractory multiple myeloma treated with lenalidomide and dexamethasone. Leuk Lymphoma 2010; 51: 2084–2091.

    Article  CAS  PubMed  Google Scholar 

  38. Boyd KD, Ross FM, Walker BA, Wardell CP, Tapper WJ, Chiecchio L et al. Mapping of chromosome 1p deletions in myeloma identifies FAM46C at 1p12 and CDKN2C at 1p32.3 as being genes in regions associated with adverse survival. Clin Cancer Res 2011; 17: 7776–7784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hebraud B, Magrangeas F, Cleynen A, Lauwers-Cances V, Chretien ML, Hulin C et al. Role of additional chromosomal changes in the prognostic value of t(4;14) and del(17p) in multiple myeloma: the IFM experience. Blood 2015; 125: 2095–2100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sawyer JR, Tricot G, Mattox S, Jagannath S, Barlogie B . Jumping translocations of chromosome 1q in multiple myeloma: evidence for a mechanism involving decondensation of pericentromeric heterochromatin. Blood 1998; 91: 1732–1741.

    CAS  PubMed  Google Scholar 

  41. Sawyer JR, Tian E, Heuck CJ, Epstein J, Johann DJ, Swanson CM et al. Jumping translocations of 1q12 in multiple myeloma: a novel mechanism for deletion of 17p in cytogenetically defined high-risk disease. Blood 2014; 123: 2504–2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sawyer JR, Tian E, Heuck CJ, Johann DJ, Epstein J, Swanson CM et al. Evidence of an epigenetic origin for high-risk 1q21 copy number aberrations in multiple myeloma. Blood 2015; 125: 3756–3759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Melchor L, Brioli A, Wardell CP, Murison A, Potter NE, Kaiser MF et al. Single-cell genetic analysis reveals the composition of initiating clones and phylogenetic patterns of branching and parallel evolution in myeloma. Leukemia 2014; 28: 1705–1715.

    Article  CAS  PubMed  Google Scholar 

  44. Moorman AV, Enshaei A, Schwab C, Wade R, Chilton L, Elliott A et al. A novel integrated cytogenetic and genomic classification refines risk stratification in pediatric acute lymphoblastic leukemia. Blood 2014; 124: 1434–1444.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients and staff of the Myeloma Institute for Research and Therapy. This work was supported in part by PO1 Grant CA 0055819 from the National Cancer Institute.

Author contributions

JRS analyzed and interpreted data and wrote the manuscript. CMS, CS, CLH, LP, ML, GS and JDS analyzed data. ET performed iFISH and JLL performed mFISH and SKY studies. JE, CS and CB provided statistical analysis. MZ, FED, FvR and BB provided patient samples. BB and GJM wrote and reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Sawyer.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawyer, J., Tian, E., Shaughnessy Jr, J. et al. Hyperhaploidy is a novel high-risk cytogenetic subgroup in multiple myeloma. Leukemia 31, 637–644 (2017). https://doi.org/10.1038/leu.2016.253

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.253

This article is cited by

Search

Quick links