Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Emerging therapies provide new opportunities to reshape the multifaceted interactions between the immune system and lymphoma cells

Abstract

The acquisition of a complete neoplastic phenotype requires cancer cells to develop escape mechanisms from the host immune system. This phenomenon, commonly referred to as ‘immune evasion,’ represents a hallmark of cancers and results from a Darwinian selection of the fittest tumor clones. First reported in solid tumors, cancer immunoescape characterizes several hematological malignancies. The biological bases of cancer immunoescape have recently been disclosed and include: (i) impaired human leukocyte antigen-mediated cancer cell recognition (B2M, CD58, CTIIA, CD80/CD86, CD28 and CTLA-4 mutations); (ii) deranged apoptotic mechanisms (reduced pro-apoptotic signals and/or increased expression of anti-apoptotic molecules); and (iii) changes in the tumor microenvironment involving regulatory T cells and tumor-associated macrophages. These immune-escape mechanisms characterize both Hodgkin and non-Hodgkin (B and T cell) lymphomas and represent a promising target for new anti-tumor therapies. In the present review, the principles of cancer immunoescape and their role in human lymphomagenesis are illustrated. Current therapies targeting these pathways and possible applications for lymphoma treatment are also addressed.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  2. Upadhyay R, Hammerich L, Peng P, Brown B, Merad M, Brody JD . Lymphoma: immune evasion strategies. Cancers 2015; 7: 736–762.

    CAS  PubMed  Google Scholar 

  3. Scott DW, Gascoyne RD . The tumour microenvironment in B cell lymphomas. Nat Rev Cancer 2014; 14: 517–534.

    CAS  PubMed  Google Scholar 

  4. de la Cruz-Merino L, Lejeune M, Nogales Fernandez E, Henao Carrasco F, Grueso Lopez A, Illescas Vacas A et al. Role of immune escape mechanisms in Hodgkin's lymphoma development and progression: a whole new world with therapeutic implications. Clin Dev Immunol 2012; 2012: 756353.

    PubMed  Google Scholar 

  5. Ishida T, Ueda R . Immunopathogenesis of lymphoma: focus on CCR4. Cancer Sci 2011; 102: 44–50.

    CAS  PubMed  Google Scholar 

  6. Xu ML, Fedoriw Y . Lymphoma microenvironment and immunotherapy. Surg Pathol Clin 2016; 9: 93–100.

    PubMed  Google Scholar 

  7. Nicholas NS, Apollonio B, Ramsay AG . Tumor microenvironment (TME)-driven immune suppression in B cell malignancy. Biochim Biophys Acta 2016; 1863: 471–482.

    CAS  PubMed  Google Scholar 

  8. Mottok A, Steidl C . Genomic alterations underlying immune privilege in malignant lymphomas. Curr Opin Hematol 2015; 22: 343–354.

    CAS  PubMed  Google Scholar 

  9. Armand P . Immune checkpoint blockade in hematologic malignancies. Blood 2015; 125: 3393–3400.

    CAS  PubMed  Google Scholar 

  10. Mittal D, Gubin MM, Schreiber RD, Smyth MJ . New insights into cancer immunoediting and its three component phases—elimination, equilibrium and escape. Curr Opin Immunol 2014; 27: 16–25.

    CAS  PubMed  Google Scholar 

  11. Schreiber RD, Old LJ, Smyth MJ . Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011; 331: 1565–1570.

    CAS  PubMed  Google Scholar 

  12. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ . Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011; 29: 235–271.

    CAS  PubMed  Google Scholar 

  13. Teng MW, Swann JB, Koebel CM, Schreiber RD, Smyth MJ . Immune-mediated dormancy: an equilibrium with cancer. J Leukoc Biol 2008; 84: 988–993.

    CAS  PubMed  Google Scholar 

  14. Vinay DS, Ryan EP, Pawelec G, Talib WH, Stagg J, Elkord E et al. Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol 2015; 35 (Suppl): S185–S198.

    PubMed  Google Scholar 

  15. Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 1999; 285: 727–729.

    Article  CAS  Google Scholar 

  16. Tesniere A, Panaretakis T, Kepp O, Apetoh L, Ghiringhelli F, Zitvogel L et al. Molecular characteristics of immunogenic cancer cell death. Cell Death Differ 2008; 15: 3–12.

    CAS  PubMed  Google Scholar 

  17. Street SE, Trapani JA, MacGregor D, Smyth MJ . Suppression of lymphoma and epithelial malignancies effected by interferon gamma. J Exp Med 2002; 196: 129–134.

    CAS  PubMed  Google Scholar 

  18. Old LJ, Boyse EA . Immunology of experimental tumors. Annu Rev Med 1964; 15: 167–186.

    CAS  PubMed  Google Scholar 

  19. Sahin U, Tureci O, Schmitt H, Cochlovius B, Johannes T, Schmits R et al. Human neoplasms elicit multiple specific immune responses in the autologous host. Proc Natl Acad Sci USA 1995; 92: 11810–11813.

    CAS  PubMed  Google Scholar 

  20. Kowalewski DJ, Stevanovic S . Biochemical large-scale identification of MHC class I ligands. Methods Mol Biol 2013; 960: 145–157.

    CAS  PubMed  Google Scholar 

  21. Morecki S, Pugatsch T, Levi S, Moshel Y, Slavin S . Tumor-cell vaccination induces tumor dormancy in a murine model of B-cell leukemia/lymphoma (BCL1). Int J Cancer 1996; 65: 204–208.

    CAS  PubMed  Google Scholar 

  22. Demicheli R, Abbattista A, Miceli R, Valagussa P, Bonadonna G . Time distribution of the recurrence risk for breast cancer patients undergoing mastectomy: further support about the concept of tumor dormancy. Breast Cancer Res Treat 1996; 41: 177–185.

    CAS  PubMed  Google Scholar 

  23. Meng S, Tripathy D, Frenkel EP, Shete S, Naftalis EZ, Huth JF et al. Circulating tumor cells in patients with breast cancer dormancy. Clin Cancer Res 2004; 10: 8152–8162.

    PubMed  Google Scholar 

  24. Myron Kauffman H, McBride MA, Cherikh WS, Spain PC, Marks WH, Roza AM . Transplant tumor registry: donor related malignancies. Transplantation 2002; 74: 358–362.

    CAS  PubMed  Google Scholar 

  25. Bhatia A, Kumar Y . Cancer-immune equilibrium: questions unanswered. Cancer Microenviron 2011; 4: 209–217.

    PubMed  Google Scholar 

  26. Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD . Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 2002; 3: 991–998.

    CAS  PubMed  Google Scholar 

  27. Bonapace L, Coissieux MM, Wyckoff J, Mertz KD, Varga Z, Junt T et al. Cessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesis. Nature 2014; 515: 130–133.

    CAS  PubMed  Google Scholar 

  28. Wu X, Peng M, Huang B, Zhang H, Wang H, Huang B et al. Immune microenvironment profiles of tumor immune equilibrium and immune escape states of mouse sarcoma. Cancer Lett 2013; 340: 124–133.

    CAS  PubMed  Google Scholar 

  29. Igney FH, Krammer PH . Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol 2002; 71: 907–920.

    CAS  PubMed  Google Scholar 

  30. Clark EA, Ledbetter JA . How B and T cells talk to each other. Nature 1994; 367: 425–428.

    CAS  PubMed  Google Scholar 

  31. Lanzavecchia A . Identifying strategies for immune intervention. Science 1993; 260: 937–944.

    CAS  PubMed  Google Scholar 

  32. Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC . The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987; 329: 512–518.

    CAS  PubMed  Google Scholar 

  33. Peaper DR, Cresswell P . Regulation of MHC class I assembly and peptide binding. Annu Rev Cell Dev Biol 2008; 24: 343–368.

    CAS  PubMed  Google Scholar 

  34. Zinkernagel RM, Doherty PC . Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis. Nature 1974; 251: 547–548.

    CAS  PubMed  Google Scholar 

  35. Bernal M, Ruiz-Cabello F, Concha A, Paschen A, Garrido F . Implication of the beta2-microglobulin gene in the generation of tumor escape phenotypes. Cancer Immunol Immunother 2012; 61: 1359–1371.

    PubMed  Google Scholar 

  36. Challa-Malladi M, Lieu YK, Califano O, Holmes AB, Bhagat G, Murty VV et al. Combined genetic inactivation of beta2-Microglobulin and CD58 reveals frequent escape from immune recognition in diffuse large B cell lymphoma. Cancer cell 2011; 20: 728–740.

    CAS  PubMed  Google Scholar 

  37. Palomero T, Couronne L, Khiabanian H, Kim MY, Ambesi-Impiombato A, Perez-Garcia A et al. Recurrent mutations in epigenetic regulators, RHOA and FYN kinase in peripheral T cell lymphomas. Nat Genet 2014; 46: 166–170.

    CAS  PubMed  Google Scholar 

  38. Garrido C, Algarra I, Maleno I, Stefanski J, Collado A, Garrido F et al. Alterations of HLA class I expression in human melanoma xenografts in immunodeficient mice occur frequently and are associated with higher tumorigenicity. Cancer Immunol Immunother 2010; 59: 13–26.

    CAS  PubMed  Google Scholar 

  39. Jordanova ES, Riemersma SA, Philippo K, Schuuring E, Kluin PM . Beta2-microglobulin aberrations in diffuse large B-cell lymphoma of the testis and the central nervous system. Int J Cancer 2003; 103: 393–398.

    CAS  PubMed  Google Scholar 

  40. Rosa F, Fellous M, Dron M, Tovey M, Revel M . Presence of an abnormal beta 2-microglobulin mRNA in Daudi cells: induction by interferon. Immunogenetics 1983; 17: 125–131.

    CAS  PubMed  Google Scholar 

  41. Pasqualucci L, Khiabanian H, Fangazio M, Vasishtha M, Messina M, Holmes AB et al. Genetics of follicular lymphoma transformation. Cell Rep 2014; 6: 130–140.

    CAS  PubMed  Google Scholar 

  42. Pasqualucci L, Dalla-Favera R . SnapShot: diffuse large B cell lymphoma. Cancer Cell 2014; 25: 132–132 e131.

    CAS  PubMed  Google Scholar 

  43. Reichel J, Chadburn A, Rubinstein PG, Giulino-Roth L, Tam W, Liu Y et al. Flow sorting and exome sequencing reveal the oncogenome of primary Hodgkin and Reed-Sternberg cells. Blood 2015; 125: 1061–1072.

    CAS  PubMed  Google Scholar 

  44. Adamashvili I, Kelley RE, Pressly T, McDonald JC . Soluble HLA: patterns of expression in normal subjects, autoimmune diseases, and transplant recipients. Rheumatol Int 2005; 25: 491–500.

    PubMed  Google Scholar 

  45. Contini P, Ghio M, Merlo A, Poggi A, Indiveri F, Puppo F . Apoptosis of antigen-specific T lymphocytes upon the engagement of CD8 by soluble HLA class I molecules is Fas ligand/Fas mediated: evidence for the involvement of p56lck, calcium calmodulin kinase II, and Calcium-independent protein kinase C signaling pathways and for NF-kappaB and NF-AT nuclear translocation. J Immunoly 2005; 175: 7244–7254.

    CAS  Google Scholar 

  46. Spaggiari GM, Contini P, Dondero A, Carosio R, Puppo F, Indiveri F et al. Soluble HLA class I induces NK cell apoptosis upon the engagement of killer-activating HLA class I receptors through FasL-Fas interaction. Blood 2002; 100: 4098–4107.

    CAS  PubMed  Google Scholar 

  47. Steidl C, Shah SP, Woolcock BW, Rui L, Kawahara M, Farinha P et al. MHC class II transactivator CIITA is a recurrent gene fusion partner in lymphoid cancers. Nature 2011; 471: 377–381.

    CAS  PubMed  Google Scholar 

  48. Diepstra A, van Imhoff GW, Karim-Kos HE, van den Berg A, te Meerman GJ, Niens M et al. HLA class II expression by Hodgkin Reed-Sternberg cells is an independent prognostic factor in classical Hodgkin's lymphoma. J Clin Oncol 2007; 25: 3101–3108.

    PubMed  Google Scholar 

  49. Green MR, Kihira S, Liu CL, Nair RV, Salari R, Gentles AJ et al. Mutations in early follicular lymphoma progenitors are associated with suppressed antigen presentation. Proc Natl Acad Sci USA 2015; 112: E1116–E1125.

    CAS  PubMed  Google Scholar 

  50. Riemersma SA, Jordanova ES, Schop RF, Philippo K, Looijenga LH, Schuuring E et al. Extensive genetic alterations of the HLA region, including homozygous deletions of HLA class II genes in B-cell lymphomas arising in immune-privileged sites. Blood 2000; 96: 3569–3577.

    CAS  PubMed  Google Scholar 

  51. Juszczynski P, Kalinka E, Bienvenu J, Woszczek G, Borowiec M, Robak T et al. Human leukocyte antigens class II and tumor necrosis factor genetic polymorphisms are independent predictors of non-Hodgkin lymphoma outcome. Blood 2002; 100: 3037–3040.

    PubMed  Google Scholar 

  52. Lech-Maranda E, Juszczynski P, Szmigielska-Kaplon A, Jamroziak K, Balcerczak E, Robak T . Human leukocyte antigens HLA DRB1 influence clinical outcome of chronic lymphocytic leukemia? Haematologica 2007; 92: 710–711.

    PubMed  Google Scholar 

  53. Hviid TV, Hylenius S, Rorbye C, Nielsen LG . HLA-G allelic variants are associated with differences in the HLA-G mRNA isoform profile and HLA-G mRNA levels. Immunogenetics 2003; 55: 63–79.

    CAS  PubMed  Google Scholar 

  54. Vijai J, Wang Z, Berndt SI, Skibola CF, Slager SL, de Sanjose S et al. A genome-wide association study of marginal zone lymphoma shows association to the HLA region. Nat Commun 2015; 6: 5751.

    CAS  PubMed  Google Scholar 

  55. Skibola CF, Akers NK, Conde L, Ladner M, Hawbecker SK, Cohen F et al. Multi-locus HLA class I and II allele and haplotype associations with follicular lymphoma. Tissue Antigens 2012; 79: 279–286.

    CAS  PubMed  Google Scholar 

  56. Smedby KE, Foo JN, Skibola CF, Darabi H, Conde L, Hjalgrim H et al. GWAS of follicular lymphoma reveals allelic heterogeneity at 6p21.32 and suggests shared genetic susceptibility with diffuse large B-cell lymphoma. PLoS Genet 2011; 7: e1001378.

    CAS  PubMed  Google Scholar 

  57. Urayama KY, Jarrett RF, Hjalgrim H, Diepstra A, Kamatani Y, Chabrier A et al. Genome-wide association study of classical Hodgkin lymphoma and Epstein-Barr virus status-defined subgroups. J Natl Cancer Inst 2012; 104: 240–253.

    CAS  PubMed  Google Scholar 

  58. Johnson PC, McAulay KA, Montgomery D, Lake A, Shield L, Gallagher A et al. Modeling HLA associations with EBV-positive and -negative Hodgkin lymphoma suggests distinct mechanisms in disease pathogenesis. Int J Cancer 2015; 137: 1066–1075.

    CAS  PubMed  Google Scholar 

  59. Delahaye-Sourdeix M, Urayama KY, Gaborieau V, Veenstra R, Foll M, Chabrier A et al. A novel risk locus at 6p21.3 for Epstein-Barr virus-positive Hodgkin lymphoma. Cancer Epidemiol Biomarkers Prev 2015; 24: 1838–1843.

    CAS  PubMed  Google Scholar 

  60. Niens M, Jarrett RF, Hepkema B, Nolte IM, Diepstra A, Platteel M et al. HLA-A*02 is associated with a reduced risk and HLA-A*01 with an increased risk of developing EBV+ Hodgkin lymphoma. Blood 2007; 110: 3310–3315.

    CAS  Google Scholar 

  61. Jones K, Wockner L, Brennan RM, Keane C, Chattopadhyay PK, Roederer M et al. The impact of HLA class I and EBV latency-II antigen-specific CD8(+) T cells on the pathogenesis of EBV(+) Hodgkin lymphoma. Clin Exp Immunol 2016; 183: 206–220.

    CAS  PubMed  Google Scholar 

  62. Boussiotis VA, Freeman GJ, Gribben JG, Nadler LM . The role of B7-1/B7-2:CD28/CLTA-4 pathways in the prevention of anergy, induction of productive immunity and down-regulation of the immune response. Immunol Rev 1996; 153: 5–26.

    CAS  PubMed  Google Scholar 

  63. Delabie J, Ceuppens JL, Vandenberghe P, de Boer M, Coorevits L, De Wolf-Peeters C . The B7/BB1 antigen is expressed by Reed-Sternberg cells of Hodgkin's disease and contributes to the stimulating capacity of Hodgkin's disease-derived cell lines. Blood 1993; 82: 2845–2852.

    CAS  PubMed  Google Scholar 

  64. Ranheim EA, Kipps TJ . Activated T cells induce expression of B7/BB1 on normal or leukemic B cells through a CD40-dependent signal. J Exp Med 1993; 177: 925–935.

    CAS  PubMed  Google Scholar 

  65. Pope B, Brown RD, Gibson J, Yuen E, Joshua D . B7-2-positive myeloma: incidence, clinical characteristics, prognostic significance, and implications for tumor immunotherapy. Blood 2000; 96: 1274–1279.

    CAS  PubMed  Google Scholar 

  66. Maio M, Del Vecchio L . Expression and functional role of CD54/Intercellular Adhesion Molecule-1 (ICAM-1) on human blood cells. Leuk Lymphoma 1992; 8: 23–33.

    CAS  PubMed  Google Scholar 

  67. Inghirami G, Wieczorek R, Zhu BY, Silber R, Dalla-Favera R, Knowles DM . Differential expression of LFA-1 molecules in non-Hodgkin's lymphoma and lymphoid leukemia. Blood 1988; 72: 1431–1434.

    CAS  PubMed  Google Scholar 

  68. Inghirami G, Grignani F, Sternas L, Lombardi L, Knowles DM, Dalla-Favera R . Down-regulation of LFA-1 adhesion receptors by C-myc oncogene in human B lymphoblastoid cells. Science 1990; 250: 682–686.

    CAS  PubMed  Google Scholar 

  69. Ramsay AG, Johnson AJ, Lee AM, Gorgun G, Le Dieu R, Blum W et al. Chronic lymphocytic leukemia T cells show impaired immunological synapse formation that can be reversed with an immunomodulating drug. J Clin Invest 2008; 118: 2427–2437.

    CAS  PubMed  Google Scholar 

  70. Ramsay AG, Clear AJ, Kelly G, Fatah R, Matthews J, Macdougall F et al. Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: implications for the tumor microenvironment and immunotherapy. Blood 2009; 114: 4713–4720.

    CAS  PubMed  Google Scholar 

  71. Scholer A, Hugues S, Boissonnas A, Fetler L, Amigorena S . Intercellular adhesion molecule-1-dependent stable interactions between T cells and dendritic cells determine CD8+ T cell memory. Immunity 2008; 28: 258–270.

    CAS  PubMed  Google Scholar 

  72. Stopeck AT, Gessner A, Miller TP, Hersh EM, Johnson CS, Cui H et al. Loss of B7.2 (CD86) and intracellular adhesion molecule 1 (CD54) expression is associated with decreased tumor-infiltrating T lymphocytes in diffuse B-cell large-cell lymphoma. Clin Cancer Res 2000; 6: 3904–3909.

    CAS  PubMed  Google Scholar 

  73. Terol MJ, Tormo M, Martinez-Climent JA, Marugan I, Benet I, Ferrandez A et al. Soluble intercellular adhesion molecule-1 (s-ICAM-1/s-CD54) in diffuse large B-cell lymphoma: association with clinical characteristics and outcome. Ann Oncol 2003; 14: 467–474.

    CAS  PubMed  Google Scholar 

  74. Scaffidi C, Kirchhoff S, Krammer PH, Peter ME . Apoptosis signaling in lymphocytes. Curr Opin Immunol 1999; 11: 277–285.

    CAS  PubMed  Google Scholar 

  75. Verbeke CS, Wenthe U, Grobholz R, Zentgraf H . Fas ligand expression in Hodgkin lymphoma. Am J Surg Pathol 2001; 25: 388–394.

    CAS  PubMed  Google Scholar 

  76. Inaba H, Shimada K, Zhou YW, Ido M, Buck S, Yonehara S et al. Acquisition of Fas resistance by Fas receptor mutation in a childhood B-precursor acute lymphoblastic leukemia cell line, MML-1. Int J Oncol 2005; 27: 573–579.

    CAS  PubMed  Google Scholar 

  77. Egle A, Villunger A, Marschitz I, Kos M, Hittmair A, Lukas P et al. Expression of Apo-1/Fas (CD95), Bcl-2, Bax and Bcl-x in myeloma cell lines: relationship between responsiveness to anti-Fas mab and p53 functional status. Br J Haematol 1997; 97: 418–428.

    CAS  PubMed  Google Scholar 

  78. Takahashi H, Feuerhake F, Kutok JL, Monti S, Dal Cin P, Neuberg D et al. FAS death domain deletions and cellular FADD-like interleukin 1beta converting enzyme inhibitory protein (long) overexpression: alternative mechanisms for deregulating the extrinsic apoptotic pathway in diffuse large B-cell lymphoma subtypes. Clin Cancer Res 2006; 12: 3265–3271.

    CAS  PubMed  Google Scholar 

  79. Villa-Morales M, Cobos MA, Gonzalez-Gugel E, Alvarez-Iglesias V, Martinez B, Piris MA et al. FAS system deregulation in T-cell lymphoblastic lymphoma. Cell Death Dis 2014; 5: e1110.

    CAS  PubMed  Google Scholar 

  80. Yurchenko M, Sidorenko SP . Hodgkin's lymphoma: the role of cell surface receptors in regulation of tumor cell fate. Exp Oncol 2010; 32: 214–223.

    CAS  PubMed  Google Scholar 

  81. Straus SE, Jaffe ES, Puck JM, Dale JK, Elkon KB, Rosen-Wolff A et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood 2001; 98: 194–200.

    CAS  PubMed  Google Scholar 

  82. Jones CL, Wain EM, Chu CC, Tosi I, Foster R, McKenzie RC et al. Downregulation of Fas gene expression in Sezary syndrome is associated with promoter hypermethylation. J Invest Dermatol 2010; 130: 1116–1125.

    CAS  PubMed  Google Scholar 

  83. Travert M, Ame-Thomas P, Pangault C, Morizot A, Micheau O, Semana G et al. CD40 ligand protects from TRAIL-induced apoptosis in follicular lymphomas through NF-kappaB activation and up-regulation of c-FLIP and Bcl-xL. J Immunol 2008; 181: 1001–1011.

    CAS  PubMed  Google Scholar 

  84. Metkar SS, Manna PP, Anand M, Naresh KN, Advani SH, Nadkarni JJ . CD40 Ligand—an anti-apoptotic molecule in Hodgkin's disease. Cancer Biother Radiopharm 2001; 16: 85–92.

    CAS  PubMed  Google Scholar 

  85. Liston P, Roy N, Tamai K, Lefebvre C, Baird S, Cherton-Horvat G et al. Suppression of apoptosis in mammalian cells by NAIP and a related family of IAP genes. Nature 1996; 379: 349–353.

    CAS  PubMed  Google Scholar 

  86. Valenzuela MM, Ferguson Bennit HR, Gonda A, Diaz Osterman CJ, Hibma A, Khan S et al. Exosomes secreted from human cancer cell lines contain inhibitors of apoptosis (IAP). Cancer Microenviron 2015; 8: 65–73.

    CAS  PubMed  Google Scholar 

  87. Fulda S . Inhibitor of apoptosis (IAP) proteins in hematological malignancies: molecular mechanisms and therapeutic opportunities. Leukemia 2014; 28: 1414–1422.

    CAS  PubMed  Google Scholar 

  88. Opel D, Schnaiter A, Dodier D, Jovanovic M, Gerhardinger A, Idler I et al. Targeting inhibitor of apoptosis proteins by Smac mimetic elicits cell death in poor prognostic subgroups of chronic lymphocytic leukemia. Int J Cancer 2015; 137: 2959–2970.

    CAS  PubMed  Google Scholar 

  89. Su T, Li J, Meng M, Zhao S, Xu Y, Ding X et al. Bone marrow stromal cells induced activation of nuclear factor kappaB signaling protects non-Hodgkin's B lymphoma cells from apoptosis. Tumour Biol 2016; e-pub ahead of print 12 February 2016.

  90. Ame-Thomas P, Maby-El Hajjami H, Monvoisin C, Jean R, Monnier D, Caulet-Maugendre S et al. Human mesenchymal stem cells isolated from bone marrow and lymphoid organs support tumor B-cell growth: role of stromal cells in follicular lymphoma pathogenesis. Blood 2007; 109: 693–702.

    CAS  Google Scholar 

  91. Pitt LA, Tikhonova AN, Hu H, Trimarchi T, King B, Gong Y et al. CXCL12-producing vascular endothelial niches control acute T cell leukemia maintenance. Cancer Cell 2015; 27: 755–768.

    CAS  PubMed  Google Scholar 

  92. Passaro D, Irigoyen M, Catherinet C, Gachet S, Da Costa De Jesus C, Lasgi C et al. CXCR4 is required for leukemia-initiating cell activity in T cell acute lymphoblastic leukemia. Cancer Cell 2015; 27: 769–779.

    CAS  PubMed  Google Scholar 

  93. Murata Y, Kotani T, Ohnishi H, Matozaki T . The CD47-SIRPalpha signalling system: its physiological roles and therapeutic application. J Biochem 2014; 155: 335–344.

    CAS  PubMed  Google Scholar 

  94. Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S et al. Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 2010; 142: 699–713.

    CAS  PubMed  Google Scholar 

  95. Chao MP, Tang C, Pachynski RK, Chin R, Majeti R, Weissman IL . Extranodal dissemination of non-Hodgkin lymphoma requires CD47 and is inhibited by anti-CD47 antibody therapy. Blood 2011; 118: 4890–4901.

    CAS  PubMed  Google Scholar 

  96. Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R, Zhao F et al. Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res 2011; 71: 1374–1384.

    CAS  PubMed  Google Scholar 

  97. Goto H, Kojima Y, Matsuda K, Kariya R, Taura M, Kuwahara K et al. Efficacy of anti-CD47 antibody-mediated phagocytosis with macrophages against primary effusion lymphoma. Eur J Cancer 2014; 50: 1836–1846.

    CAS  PubMed  Google Scholar 

  98. Scott DW, Steidl C . The classical Hodgkin lymphoma tumor microenvironment: macrophages and gene expression-based modeling. Hematol Am Soc Hematol Educ Program 2014; 2014: 144–150.

    Google Scholar 

  99. Elpek KG, Lacelle C, Singh NP, Yolcu ES, Shirwan H . CD4+CD25+ T regulatory cells dominate multiple immune evasion mechanisms in early but not late phases of tumor development in a B cell lymphoma model. J Immunology 2007; 178: 6840–6848.

    CAS  Google Scholar 

  100. Shevach EM, Thornton AM . tTregs, pTregs, and iTregs: similarities and differences. Immunol Rev 2014; 259: 88–102.

    CAS  PubMed  Google Scholar 

  101. Shalev I, Schmelzle M, Robson SC, Levy G . Making sense of regulatory T cell suppressive function. Semin Immunol 2011; 23: 282–292.

    CAS  PubMed  Google Scholar 

  102. Ren X, Ye F, Jiang Z, Chu Y, Xiong S, Wang Y . Involvement of cellular death in TRAIL/DR5-dependent suppression induced by CD4(+)CD25(+) regulatory T cells. Cell Death Differ 2007; 14: 2076–2084.

    CAS  PubMed  Google Scholar 

  103. Boissonnas A, Scholer-Dahirel A, Simon-Blancal V, Pace L, Valet F, Kissenpfennig A et al. Foxp3+ T cells induce perforin-dependent dendritic cell death in tumor-draining lymph nodes. Immunity 2010; 32: 266–278.

    CAS  Google Scholar 

  104. Rehm A, Anagnostopoulos I, Gerlach K, Broemer M, Scheidereit C, Johrens K et al. Identification of a chemokine receptor profile characteristic for mediastinal large B-cell lymphoma. Int J Cancer 2009; 125: 2367–2374.

    CAS  PubMed  Google Scholar 

  105. Patrussi L, Capitani N, Martini V, Pizzi M, Trimarco V, Frezzato F et al. Enhanced chemokine receptor recycling and impaired S1P1 expression promote leukemic cell infiltration of lymph nodes in chronic lymphocytic leukemia. Cancer Res 2015; 75: 4153–4163.

    CAS  PubMed  Google Scholar 

  106. Ishida T, Ishii T, Inagaki A, Yano H, Komatsu H, Iida S et al. Specific recruitment of CC chemokine receptor 4-positive regulatory T cells in Hodgkin lymphoma fosters immune privilege. Cancer Res 2006; 66: 5716–5722.

    CAS  PubMed  Google Scholar 

  107. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM . CD70+ non-Hodgkin lymphoma B cells induce Foxp3 expression and regulatory function in intratumoral CD4+CD25 T cells. Blood 2007; 110: 2537–2544.

    CAS  PubMed  Google Scholar 

  108. Yang ZZ, Novak AJ, Ziesmer SC, Witzig TE, Ansell SM . Malignant B cells skew the balance of regulatory T cells and TH17 cells in B-cell non-Hodgkin's lymphoma. Cancer Res 2009; 69: 5522–5530.

    CAS  PubMed  Google Scholar 

  109. Juszczynski P, Ouyang J, Monti S, Rodig SJ, Takeyama K, Abramson J et al. The AP1-dependent secretion of galectin-1 by Reed Sternberg cells fosters immune privilege in classical Hodgkin lymphoma. Proc Natl Acad Sci USA 2007; 104: 13134–13139.

    CAS  PubMed  Google Scholar 

  110. Hoyer KK, Pang M, Gui D, Shintaku IP, Kuwabara I, Liu FT et al. An anti-apoptotic role for galectin-3 in diffuse large B-cell lymphomas. Am J Pathol 2004; 164: 893–902.

    CAS  PubMed  Google Scholar 

  111. Nakahara S, Oka N, Raz A . On the role of galectin-3 in cancer apoptosis. Apoptosis 2005; 10: 267–275.

    CAS  PubMed  Google Scholar 

  112. Ruvolo PP . Galectin 3 as a guardian of the tumor microenvironment. Biochim Biophys Acta 2015; 1863: 427–437.

    PubMed  Google Scholar 

  113. Giordano M, Croci DO, Rabinovich GA . Galectins in hematological malignancies. Curr Opin Hematol 2013; 20: 327–335.

    CAS  PubMed  Google Scholar 

  114. Ruffell B, Coussens LM . Macrophages and therapeutic resistance in cancer. Cancer Cell 2015; 27: 462–472.

    CAS  PubMed  Google Scholar 

  115. Pollard JW . Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 2004; 4: 71–78.

    CAS  Google Scholar 

  116. Bingle L, Brown NJ, Lewis CE . The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 2002; 196: 254–265.

    CAS  PubMed  Google Scholar 

  117. Dave SS, Wright G, Tan B, Rosenwald A, Gascoyne RD, Chan WC et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med 2004; 351: 2159–2169.

    CAS  Google Scholar 

  118. Lenz G, Wright G, Dave SS, Xiao W, Powell J, Zhao H et al. Stromal gene signatures in large-B-cell lymphomas. N Engl J Med 2008; 359: 2313–2323.

    CAS  PubMed  Google Scholar 

  119. Steidl C, Lee T, Shah SP, Farinha P, Han G, Nayar T et al. Tumor-associated macrophages and survival in classic Hodgkin's lymphoma. N Engl J Med 2010; 362: 875–885.

    CAS  PubMed  Google Scholar 

  120. Ma Y, Visser L, Roelofsen H, de Vries M, Diepstra A, van Imhoff G et al. Proteomics analysis of Hodgkin lymphoma: identification of new players involved in the cross-talk between HRS cells and infiltrating lymphocytes. Blood 2008; 111: 2339–2346.

    CAS  PubMed  Google Scholar 

  121. Belting L, Homberg N, Przewoznik M, Brenner C, Riedel T, Flatley A et al. Critical role of the NKG2D receptor for NK cell-mediated control and immune escape of B-cell lymphoma. Eur J Immunol 2015; 45: 2593–2601.

    CAS  PubMed  Google Scholar 

  122. Gilbert LA, Hemann MT . Context-specific roles for paracrine IL-6 in lymphomagenesis. Genes Dev 2012; 26: 1758–1768.

    CAS  PubMed  Google Scholar 

  123. Mocellin S, Panelli M, Wang E, Rossi CR, Pilati P, Nitti D et al. IL-10 stimulatory effects on human NK cells explored by gene profile analysis. Genes Immun 2004; 5: 621–630.

    CAS  PubMed  Google Scholar 

  124. Lech-Maranda E, Baseggio L, Bienvenu J, Charlot C, Berger F, Rigal D et al. Interleukin-10 gene promoter polymorphisms influence the clinical outcome of diffuse large B-cell lymphoma. Blood 2004; 103: 3529–3534.

    CAS  PubMed  Google Scholar 

  125. Czarneski J, Lin YC, Chong S, McCarthy B, Fernandes H, Parker G et al. Studies in NZB IL-10 knockout mice of the requirement of IL-10 for progression of B-cell lymphoma. Leukemia 2004; 18: 597–606.

    CAS  PubMed  Google Scholar 

  126. Gary-Gouy H, Harriague J, Bismuth G, Platzer C, Schmitt C, Dalloul AH . Human CD5 promotes B-cell survival through stimulation of autocrine IL-10 production. Blood 2002; 100: 4537–4543.

    CAS  PubMed  Google Scholar 

  127. Green MR, Monti S, Rodig SJ, Juszczynski P, Currie T, O'Donnell E et al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood 2010; 116: 3268–3277.

    CAS  PubMed  Google Scholar 

  128. Quan L, Chen X, Liu A, Zhang Y, Guo X, Yan S et al. PD-1 blockade can restore functions of T-cells in Epstein-Barr virus-positive diffuse large B-cell lymphoma in vitro. PLoS One 2015; 10: e0136476.

    PubMed  Google Scholar 

  129. Rosenwald A, Wright G, Leroy K, Yu X, Gaulard P, Gascoyne RD et al. Molecular diagnosis of primary mediastinal B cell lymphoma identifies a clinically favorable subgroup of diffuse large B cell lymphoma related to Hodgkin lymphoma. J Exp Med 2003; 198: 851–862.

    CAS  PubMed  Google Scholar 

  130. Chapuy B, Roemer MG, Stewart C, Tan Y, Abo RP, Zhang L et al. Targetable genetic features of primary testicular and primary central nervous system lymphomas. Blood 2015; 127: 869–881.

    PubMed  Google Scholar 

  131. Twa DD, Chan FC, Ben-Neriah S, Woolcock BW, Mottok A, Tan KL et al. Genomic rearrangements involving programmed death ligands are recurrent in primary mediastinal large B-cell lymphoma. Blood 2014; 123: 2062–2065.

    CAS  PubMed  Google Scholar 

  132. Mottok A, Woolcock B, Chan FC, Tong KM, Chong L, Farinha P et al. Genomic alterations in CIITA are frequent in primary mediastinal large B cell lymphoma and are associated with diminished MHC class II expression. Cell Rep 2015; 13: 1418–1431.

    CAS  PubMed  Google Scholar 

  133. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin's lymphoma. N Engl J Med 2015; 372: 311–319.

    PubMed  Google Scholar 

  134. Berghoff AS, Ricken G, Widhalm G, Rajky O, Hainfellner JA, Birner P et al. PD1 (CD279) and PD-L1 (CD274, B7H1) expression in primary central nervous system lymphomas (PCNSL). Clin Neuropathol 2014; 33: 42–49.

    PubMed  Google Scholar 

  135. Brusa D, Serra S, Coscia M, Rossi D, D'Arena G, Laurenti L et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica 2013; 98: 953–963.

    CAS  PubMed  Google Scholar 

  136. Czuczman MS, Thall A, Witzig TE, Vose JM, Younes A, Emmanouilides C et al. Phase I/II study of galiximab, an anti-CD80 antibody, for relapsed or refractory follicular lymphoma. J Clin Oncol 2005; 23: 4390–4398.

    CAS  PubMed  Google Scholar 

  137. Czuczman MS, Leonard JP, Jung S, Johnson JL, Hsi ED, Byrd JC et al. Phase II trial of galiximab (anti-CD80 monoclonal antibody) plus rituximab (CALGB 50402): Follicular Lymphoma International Prognostic Index (FLIPI) score is predictive of upfront immunotherapy responsiveness. Ann Oncol 2012; 23: 2356–2362.

    CAS  PubMed  Google Scholar 

  138. Greaves P, Gribben JG . The role of B7 family molecules in hematologic malignancy. Blood 2013; 121: 734–744.

    CAS  PubMed  Google Scholar 

  139. Eyre TA, Collins GP . Immune checkpoint inhibition in lymphoid disease. Br J Haematol 2015; 170: 291–304.

    PubMed  Google Scholar 

  140. Batlevi CL, Matsuki E, Brentjens RJ, Younes A . Novel immunotherapies in lymphoid malignancies. Nat Rev Clin Oncol 2016; 13: 25–40.

    CAS  PubMed  Google Scholar 

  141. Ansell SM, Hurvitz SA, Koenig PA, LaPlant BR, Kabat BF, Fernando D et al. Phase I study of ipilimumab, an anti-CTLA-4 monoclonal antibody, in patients with relapsed and refractory B-cell non-Hodgkin lymphoma. Clin Cancer Res 2009; 15: 6446–6453.

    CAS  PubMed  Google Scholar 

  142. Bashey A, Medina B, Corringham S, Pasek M, Carrier E, Vrooman L et al. CTLA4 blockade with ipilimumab to treat relapse of malignancy after allogeneic hematopoietic cell transplantation. Blood 2009; 113: 1581–1588.

    CAS  PubMed  Google Scholar 

  143. Armand P, Nagler A, Weller EA, Devine SM, Avigan DE, Chen YB et al. Disabling immune tolerance by programmed death-1 blockade with pidilizumab after autologous hematopoietic stem-cell transplantation for diffuse large B-cell lymphoma: results of an international phase II trial. J Clin Oncol 2013; 31: 4199–4206.

    CAS  PubMed  Google Scholar 

  144. Diefenbach CS, Li H, Hong F, Gordon LI, Fisher RI, Bartlett NL et al. Evaluation of the International Prognostic Score (IPS-7) and a Simpler Prognostic Score (IPS-3) for advanced Hodgkin lymphoma in the modern era. Br J Haematol 2015; 171: 530–538.

    CAS  PubMed  Google Scholar 

  145. Westin J, Oki Y, Fayad L . Could treatment with R-HCVAD/R-MA as compared to R-CHOP truly result in improved outcomes for patients with high-risk diffuse large B cell lymphoma? Response to Landsburg et al. Br J Haematol 2014; 165: 146–147.

    CAS  PubMed  Google Scholar 

  146. Ishii T, Ishida T, Utsunomiya A, Inagaki A, Yano H, Komatsu H et al. Defucosylated humanized anti-CCR4 monoclonal antibody KW-0761 as a novel immunotherapeutic agent for adult T-cell leukemia/lymphoma. Clin Cancer Res 2010; 16: 1520–1531.

    CAS  PubMed  Google Scholar 

  147. Mihara M, Kasutani K, Okazaki M, Nakamura A, Kawai S, Sugimoto M et al. Tocilizumab inhibits signal transduction mediated by both mIL-6R and sIL-6R, but not by the receptors of other members of IL-6 cytokine family. Int Immunopharmacol 2005; 5: 1731–1740.

    CAS  PubMed  Google Scholar 

  148. Scheinecker C, Smolen J, Yasothan U, Stoll J, Kirkpatrick P . Tocilizumab. Nat Rev Drug Discov 2009; 8: 273–274.

    CAS  PubMed  Google Scholar 

  149. Kronke J, Udeshi ND, Narla A, Grauman P, Hurst SN, McConkey M et al. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science 2014; 343: 301–305.

    PubMed  Google Scholar 

  150. Lu G, Middleton RE, Sun H, Naniong M, Ott CJ, Mitsiades CS et al. The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science 2014; 343: 305–309.

    CAS  PubMed  Google Scholar 

  151. Witzig TE, Nowakowski GS, Habermann TM, Goy A, Hernandez-Ilizaliturri FJ, Chiappella A et al. A comprehensive review of lenalidomide therapy for B-cell non-Hodgkin lymphoma. Ann Oncol 2015; 26: 1667–1677.

    CAS  PubMed  Google Scholar 

  152. Wiernik PH, Lossos IS, Tuscano JM, Justice G, Vose JM, Cole CE et al. Lenalidomide monotherapy in relapsed or refractory aggressive non-Hodgkin's lymphoma. J Clin Oncol 2008; 26: 4952–4957.

    PubMed  Google Scholar 

  153. Habermann TM, Lossos IS, Justice G, Vose JM, Wiernik PH, McBride K et al. Lenalidomide oral monotherapy produces a high response rate in patients with relapsed or refractory mantle cell lymphoma. Br J Haematol 2009; 145: 344–349.

    CAS  Google Scholar 

  154. Nowakowski GS, LaPlant B, Macon WR, Reeder CB, Foran JM, Nelson GD et al. Lenalidomide combined with R-CHOP overcomes negative prognostic impact of non-germinal center B-cell phenotype in newly diagnosed diffuse large B-Cell lymphoma: a phase II study. J Clin Oncol 2015; 33: 251–257.

    CAS  PubMed  Google Scholar 

  155. Vitolo U, Chiappella A, Franceschetti S, Carella AM, Baldi I, Inghirami G et al. Lenalidomide plus R-CHOP21 in elderly patients with untreated diffuse large B-cell lymphoma: results of the REAL07 open-label, multicentre, phase 2 trial. Lancet Oncol 2014; 15: 730–737.

    CAS  PubMed  Google Scholar 

  156. Ruella M, Gill S . How to train your T cell: genetically engineered chimeric antigen receptor T cells versus bispecific T-cell engagers to target CD19 in B acute lymphoblastic leukemia. Expert Opin Biol Ther 2015; 15: 761–766.

    CAS  PubMed  Google Scholar 

  157. Topp MS, Gokbuget N, Zugmaier G, Degenhard E, Goebeler ME, Klinger M et al. Long-term follow-up of hematologic relapse-free survival in a phase 2 study of blinatumomab in patients with MRD in B-lineage ALL. Blood 2012; 120: 5185–5187.

    CAS  PubMed  Google Scholar 

  158. Topp MS, Gokbuget N, Zugmaier G, Klappers P, Stelljes M, Neumann S et al. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol 2014; 32: 4134–4140.

    CAS  PubMed  Google Scholar 

  159. Oak E, Bartlett NL . Blinatumomab for the treatment of B-cell lymphoma. Expert Opin Investig Drugs 2015; 24: 715–724.

    CAS  PubMed  Google Scholar 

  160. Sun LL, Ellerman D, Mathieu M, Hristopoulos M, Chen X, Li Y et al. Anti-CD20/CD3 T cell-dependent bispecific antibody for the treatment of B cell malignancies. Sci Transl Med 2015; 7: 287ra270.

    Google Scholar 

  161. Redman JM, Hill EM, AlDeghaither D, Weiner LM . Mechanisms of action of therapeutic antibodies for cancer. Mol Immunol 2015; 67: 28–45.

    CAS  PubMed  Google Scholar 

  162. Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med 2014; 371: 1507–1517.

    PubMed  Google Scholar 

  163. Kochenderfer JN, Dudley ME, Kassim SH, Somerville RP, Carpenter RO, Stetler-Stevenson M et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol 2015; 33: 540–549.

    CAS  PubMed  Google Scholar 

  164. Mei HE, Schmidt S, Dorner T . Rationale of anti-CD19 immunotherapy: an option to target autoreactive plasma cells in autoimmunity. Arthritis Res Ther 2012; 14 (Suppl 5): S1.

    PubMed  Google Scholar 

Download references

Acknowledgements

GI is supported by the Italian Association for Cancer Research (AIRC) (5x1000 No. 10007); ImmOnc (BIO F.E.S.R. 2007/13, Asse 1 ‘Ricerca e innovazione’ della LR 34/2004) the Oncology Program of Compagnia di San Paolo, Torino and Ricerca Finalizzata, Ministero della Salute. FB is supported by the Gelu Foundation (Switzerland). GI received research funds from Oncoethix. FB received research funds or advisory honoraria (for the institution) from Oncoethix, PIQUR Therapeutics AG, EMD Serono, Bayer AG, Sigma Tau, Italfarmaco, CTI Life Sciences and Celgene.

Author contributions

GI conceived the study and wrote the manuscript. MB, MP, FB and GI wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G Inghirami.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pizzi, M., Boi, M., Bertoni, F. et al. Emerging therapies provide new opportunities to reshape the multifaceted interactions between the immune system and lymphoma cells. Leukemia 30, 1805–1815 (2016). https://doi.org/10.1038/leu.2016.161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2016.161

This article is cited by

Search

Quick links