Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

The murine long-term multi-lineage renewal marrow stem cell is a cycling cell

Abstract

Prevailing wisdom holds that hematopoietic stem cells (HSCs) are predominantly quiescent. Although HSC cycle status has long been the subject of scrutiny, virtually all marrow stem cell research has been based on studies of highly purified HSCs. Here we explored the cell cycle status of marrow stem cells in un-separated whole bone marrow (WBM). We show that a large number of long-term multi-lineage engraftable stem cells within WBM are in S/G2/M phase. Using bromodeoxyuridine, we show rapid transit through the cell cycle of a previously defined relatively dormant purified stem cell, the long-term HSC (LT-HSC; Lineage/c-kit+/Sca-1+/Flk-2). Actively cycling marrow stem cells have continually changing phenotype with cell cycle transit, likely rendering them difficult to purify to homogeneity. Indeed, as WBM contains actively cycling stem cells, and highly purified stem cells engraft predominantly while quiescent, it follows that the population of cycling marrow stem cells within WBM are lost during purification. Our studies indicate that both the discarded lineage-positive and lineage-negative marrow cells in a stem cell separation contain cycling stem cells. We propose that future work should encompass this larger population of cycling stem cells that is poorly represented in current studies solely focused on purified stem cell populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Rossi DJ, Seita J, Czechowicz A, Bhattacharya D, Bryder D, Weissman IL . Hematopoietic stem cell quiescence attenuates DNA damage response and permits DNA damage accumulation during aging. Cell Cycle 2007; 6: 2371–2376.

    Article  CAS  Google Scholar 

  2. Seita J, Weissman IL . Hematopoietic stem cell: self-renewal versus differentiation. Wiley Interdiscip Rev Syst Biol Med 2010; 2: 640–653.

    Article  CAS  Google Scholar 

  3. Morrison SJ, Weissman IL . The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1994; 1: 661–673.

    Article  CAS  Google Scholar 

  4. Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ . SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 2005; 121: 1109–1121.

    Article  CAS  Google Scholar 

  5. Quesenberry PJ, Colvin GA, Abedi M, Dooner G, Dooner M, Aliotta J et al. The Stem Cell Continuum. Ann NY Acad Sci 2005; 1044: 228–235.

    Article  Google Scholar 

  6. Quesenberry PJ . The continuum model of marrow stem cell regulation. Curr Opin Hematol 2006; 13: 216–221.

    Article  CAS  Google Scholar 

  7. Quesenberry PJ, Colvin GA, Lambert J-F . The chiaroscuro stem cell: a unified stem cell theory. Blood 2002; 100: 4266–4271.

    Article  CAS  Google Scholar 

  8. Habibian HK, Peters SO, Hsieh CC, Wuu J, Vergilis K, Grimaldi CI et al. The fluctuating phenotype of the lymphohematopoietic stem cell with cell cycle transit. J Exp Med 1998; 188: 393–398.

    Article  CAS  Google Scholar 

  9. Lambert J-F, Liu M, Colvin GA, Dooner M, McAuliffe CI, Becker PS et al. Marrow stem cells shift gene expression and engraftment phenotype with cell cycle transit. J Exp Med 2003; 197: 1563–1572.

    Article  CAS  Google Scholar 

  10. Colvin GA, Dooner MS, Dooner G, Sanchez-Guijo FM, Demers DA, Abedi M et al. Stem cell continuum: directed differentiation hotspots. Exp Hematol 2007; 35: 96–107.

    Article  CAS  Google Scholar 

  11. Cerny J, Dooner M, McAuliffe C, Habibian H, Stencil K, Berrios V et al. Homing of purified murine lymphohematopoietic stem cells: a cytokine-induced defect. J Hematother Stem Cell Res 2002; 11: 913–922.

    Article  CAS  Google Scholar 

  12. Becker PS, Nilsson SK, Li Z, Berrios VM, Dooner MS, Cooper CL et al. Adhesion receptor expression by hematopoietic cell lines and murine progenitors: Modulation by cytokines and cell cycle status. Exp Hematol 1999; 27: 533–541.

    Article  CAS  Google Scholar 

  13. Reddy VGP, McAuliffe CI, Pang L, Quesenberry PJ, Bertoncello I . Cytokine receptor repertoire and cytokine responsiveness of Hodull/Rhdull stem cells with differing potentials for G1/S phase progression. Exp Hematol 2002; 30: 792–800.

    Article  CAS  Google Scholar 

  14. Dooner GJ, Colvin GA, Dooner MS, Johnson KW, Quesenberry PJ . Gene expression fluctuations in murine hematopoietic stem cells with cell cycle progression. J Cell Physiol 2008; 214: 786–795.

    Article  CAS  Google Scholar 

  15. Quesenberry PJ, Dooner G, Dooner M, Abedi M . Developmental biology: Ignoratio elenchi: red herrings in stem cell research. Science 2005; 308: 1121–1122.

    Article  CAS  Google Scholar 

  16. Quesenberry PJ, Colvin GA, Lambert JF, Frimberger AE, Dooner MS, McAuliffe CI et al. The new stem cell biology. Trans Am Clin Climatol Assoc 2002; 113: 182–207.

    PubMed  PubMed Central  Google Scholar 

  17. Fleming WH, Alpern EJ, Uchida N, Ikuta K, Spangrude GJ, Weissman IL . Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells. J Cell Biol 1993; 122: 897–902.

    Article  CAS  Google Scholar 

  18. Passegué E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL . Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 2005; 202: 1599–1611.

    Article  Google Scholar 

  19. Orschell-Traycoff CM, Hiatt K, Dagher RN, Rice S, Yoder MC, Srour EF . Homing and engraftment potential of Sca-1+lin cells fractionated on the basis of adhesion molecule expression and position in cell cycle. Blood 2000; 96: 1380–1387.

    CAS  PubMed  Google Scholar 

  20. Spangrude GJ, Johnson GR . Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci USA 1990; 87: 7433–7437.

    Article  CAS  Google Scholar 

  21. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC . Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 1797–1806.

    Article  CAS  Google Scholar 

  22. Nilsson SK, Dooner MS, Quesenberry PJ . Synchronized cell-cycle induction of engrafting long-term repopulating stem cells. Blood 1997; 90: 4646–4650.

    CAS  PubMed  Google Scholar 

  23. Gothot A, Pyatt R, McMahel J, Rice S, Srour EF . Functional heterogeneity of human CD34(+) cells isolated in subcompartments of the G0/G1 phase of the cell cycle. Blood 1997; 90: 4384–4393.

    CAS  PubMed  Google Scholar 

  24. Shapiro HM . Practical Flow Cytometry 4th ed John Wiley and Sons Publishing: New Jersey, 2003.

    Book  Google Scholar 

  25. Iscove NN, Till JE, McCullouch EA . The proliferative states of mouse granulopoietic progenitor cells. Proc Soc Exp Biol Med 1970; 134: 33–36.

    Article  CAS  Google Scholar 

  26. Quesenberry PJ, Stanley K . A statistical analysis of murine stem cell suicide techniques. Blood 1980; 56: 1000–1005.

    CAS  PubMed  Google Scholar 

  27. Peters SO, Kittler EL, Ramshaw HS, Quesenberry PJ . Ex vivo expansion of murine marrow cells with interleukin-3 (IL-3), IL-6, IL-11 and stem cell factor leads to impaired engraftment in irradiated hosts. Blood 1996; 87: 30–37.

    CAS  PubMed  Google Scholar 

  28. Barker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449: 1003–1007.

    Article  CAS  Google Scholar 

  29. Kaplan WD, Gugler HD, Kidd KK, Tinderholt VE . Nonrandom distribution of lethals induced by tritiated thymidine in drosophila melanogaster. Genetics 1964; 49: 701–714.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Taylor JH, Woods PS, Hughes WL . The organization and duplication of chromosomes as revealed by autoradiographic studies using tritium-labeled thymidine. Proc Natl Acad Sci USA 1957; 43: 122–128.

    Article  CAS  Google Scholar 

  31. Kwok TT, Twentyman PR . Use of a tritiated thymidine suicide technique in the study of the cytotoxic drug response of cells located at different depths within multicellular spheroids. Br J Cancer 1987; 55: 367–374.

    Article  CAS  Google Scholar 

  32. Lajtha LG, Oliver R . The application of autoradiography in the study of nucleic acid metabolism. Lab Invest 1959; 8: 214–224.

    CAS  PubMed  Google Scholar 

  33. Cheshier SH, Morrison SJ, Liao X, Weissman IL . In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 1999; 96: 3120–3125.

    Article  CAS  Google Scholar 

  34. Barrett HW, West RA . Dehalogenation of substituted pyrimidines in vivo. J Am Chem Soc 1956; 78: 1612–1615.

    Article  CAS  Google Scholar 

  35. van der Wath RC, Wilson A, Laurenti E, Trumpp A, Lio P . Estimating dormant and active hematopoietic stem cell kinetics through extensive modeling of bromodeoxyuridine label-retaining cell dynamics. PLoS One 2009; 4: e6972.

    Article  Google Scholar 

  36. Brandt MD, Jessberger S, Steiner B, Kronenberg G, Reuter K, Bick-Sander A et al. Transient calretinin expression defines early postmitotic step of neuronal differentiation in adult hippocampal neurogenesis of mice. Mol Cell Neurosci 2003; 24: 603–613.

    Article  CAS  Google Scholar 

  37. Jazayeri A, Falck J, Lukas C, Bartek J, Smith GC, Lukas J et al. ATM-and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol 2006; 8: 37–45.

    Article  CAS  Google Scholar 

  38. Poot M, Hoehn H, Kubbies M, Grossman A, Chen Y, Rabinovitch PS . Cell-cycle analysis using continuous bromodeoxyuridine labeling and Hoechst 33358-ethidium bromide bivariate flow cytometry. Methods Cell Biol 1994; 41: 327–340.

    Article  CAS  Google Scholar 

  39. Kubbies M, Schindler D, Hoehn H, Rabinovitch PS . BrdU-Hoechst flow cytometry reveals regulation of human lymphocyte growth by donor age-related growth fraction and transition rate. J Cell Physiol 1985; 125: 229–234.

    Article  CAS  Google Scholar 

  40. Suzuki T, Minagawa S, Michishita E, Ogino H, Fujii M, Mitsui Y et al. Induction of senescence-associated genes by 5-bromodeoxyuridine in HeLa cells. Exp Gerontol 2001; 36: 465–474.

    Article  CAS  Google Scholar 

  41. Ross HH, Levkoff LH, Marshall GP II, Caldeira M, Steindler DA, Reynolds BA et al. Bromodeoxyuridine induces senescence in neural stem and progenitor cells. Stem Cells 2008; 26: 3218–3227.

    Article  CAS  Google Scholar 

  42. Diermeier S, Schmidt-Bruecken E, Kubbies M, Kunz-Schughart LA, Brockhoff G . Exposure to continuous bromodeoxyuridine (BrdU) differentially affects cell cycle progression of human breast and bladder cancer cell lines. Cell Prolif 2004; 37: 195–206.

    Article  CAS  Google Scholar 

  43. Rabinovitch PS, Kubbies M, Chen YC, Schindler D, Hoehn H . BrdU-Hoechst flow cytometry: a unique tool for quantitative cell cycle analysis. Exp Cell Res 1988; 174: 309–318.

    Article  CAS  Google Scholar 

  44. Reddy VGP, Tiarks CY, Pang L, Wuu J, Hsieh CC, Quesenberry PJ . Cell cycle analysis and synchronization of pluripotent hematopoietic progenitor stem cells. Blood 1997; 90: 2293–2299.

    CAS  PubMed  Google Scholar 

  45. Aliotta JM, Lee D, Puente N, Faradyan S, Sears EH, Amaral A et al. Progenitor/stem cell fate determination: interactive dynamics of cell cycle and microvesicles. Stem Cells Dev 2012; 21: 1627–1638.

    Article  CAS  Google Scholar 

  46. Berrios VM, Dooner GJ, Nowakowski G, Frimberger A, Valinski H, Quesenberry PJ et al. The molecular basis for the cytokine-induced defect in homing and engraftment of hematopoietic stem cells. Exp Hematol 2001; 29: 1326–1335.

    Article  CAS  Google Scholar 

  47. Till JE, McCulloch EA, Siminovitch L . A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 1964; 51: 29–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Center for Research Resources (NCRR) and the National Institute of General Medical Sciences (NIGMS) of the National Institutes of Health through Grant Number 8P20GM103468, and by the Herbert W. Savit 1949 Research Fellowship.

Author Contributions

PJQ supervised all the work presented in this manuscript and also was involved in the design of experiments, analysis of data and preparation of the manuscript. MSD and LRG contributed equally to this work, designing and performing the experiments, collecting and analyzing the data and preparing the manuscript. KJ performed the Pyronin and Hoechst separations for the purified LT-HSC experiments. JA provided technical and conceptual advice. EP, MP, DA and MD provided assistance with performing experiments, collecting and analyzing the data.

Disclaimer

The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Center for Research Resources or the National Institutes of Health or the Herbert W. Savit 1949 Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L R Goldberg.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberg, L., Dooner, M., Johnson, K. et al. The murine long-term multi-lineage renewal marrow stem cell is a cycling cell. Leukemia 28, 813–822 (2014). https://doi.org/10.1038/leu.2013.252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2013.252

Keywords

This article is cited by

Search

Quick links