Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Lymphoma

Mantle cell lymphoma: transcriptional regulation by microRNAs

Abstract

Mantle cell lymphoma (MCL) pathogenesis is still partially unexplained. We investigate the importance of microRNA (miRNA) expression as an additional feature that influences MCL pathway deregulation and may be useful for predicting patient outcome. Twenty-three MCL samples, eight cell lines and appropriate controls were screened for their miRNAs and gene expression profiles and DNA copy-number changes. MCL patients exhibit a characteristic signature that includes 117 miRNA (false discovery rate <0.05). Combined analysis of miRNAs and the gene expression profile, paired with bioinformatics target prediction (miRBase and TargetScan), revealed a series of genes and pathways potentially targeted by a small number of miRNAs, including essential pathways for lymphoma survival such as CD40, mitogen-activated protein kinase and NF-κB. Functional validation in MCL cell lines demonstrated NF-κB subunit nuclear translocation to be regulated by the expression of miR-26a. The expression of 12 selected miRNAs was studied by quantitative PCR in an additional series of 54 MCL cases. Univariate analysis identified a single miRNA, miR-20b, whose lack of expression distinguished cases with a survival probability of 56% at 60 months. In summary, using a novel bioinformatics approach, this study identified miRNA changes that contribute to MCL pathogenesis and markers of potential utility in MCL diagnosis and clinical prognostication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rosenwald A, Wright G, Wiestner A, Chan WC, Connors JM, Campo E et al. The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma. Cancer Cell 2003; 3: 185–197.

    Article  CAS  PubMed  Google Scholar 

  2. Jares P, Colomer D, Campo E . Genetic and molecular pathogenesis of mantle cell lymphoma: perspectives for new targeted therapeutics. Nat Rev Cancer 2007; 7: 750–762.

    Article  CAS  PubMed  Google Scholar 

  3. Martinez N, Camacho FI, Algara P, Rodriguez A, Dopazo A, Ruiz-Ballesteros E et al. The molecular signature of mantle cell lymphoma reveals multiple signals favoring cell survival. Cancer Res 2003; 63: 8226–8232.

    CAS  PubMed  Google Scholar 

  4. Williams ME, Meeker TC, Swerdlow SH . Rearrangement of the chromosome 11 bcl-1 locus in centrocytic lymphoma: analysis with multiple breakpoint probes. Blood 1991; 78: 493–498.

    CAS  PubMed  Google Scholar 

  5. de Boer CJ, Loyson S, Kluin PM, Kluin-Nelemans HC, Schuuring E, van Krieken JH . Multiple breakpoints within the BCL-1 locus in B-cell lymphoma: rearrangements of the cyclin D1 gene. Cancer Res 1993; 53: 4148–4152.

    CAS  PubMed  Google Scholar 

  6. Brizova H, Kalinova M, Krskova L, Mrhalova M, Kodet R . Quantitative monitoring of cyclin D1 expression: a molecular marker for minimal residual disease monitoring and a predictor of the disease outcome in patients with mantle cell lymphoma. Int J Cancer 2008; 123: 2865–2870.

    Article  CAS  PubMed  Google Scholar 

  7. Eulalio A, Huntzinger E, Izaurralde E . Getting to the root of miRNA-mediated gene silencing. Cell 2008; 132: 9–14.

    Article  CAS  PubMed  Google Scholar 

  8. Wu L, Belasco JG . Let me count the ways: mechanisms of gene regulation by miRNAs and siRNAs. Mol Cell 2008; 29: 1–7.

    Article  PubMed  Google Scholar 

  9. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D et al. MicroRNA expression profiles classify human cancers. Nature 2005; 435: 834–838.

    Article  CAS  PubMed  Google Scholar 

  10. Thomson JM, Newman M, Parker JS, Morin-Kensicki EM, Wright T, Hammond SM . Extensive post-transcriptional regulation of microRNAs and its implications for cancer. Genes Dev 2006; 20: 2202–2207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Croce CM . Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 2009; 10: 704–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005; 65: 7065–7070.

    Article  CAS  PubMed  Google Scholar 

  13. Yanaihara N, Caplen N, Bowman E, Seike M, Kumamoto K, Yi M et al. Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. Cancer Cell 2006; 9: 189–198.

    Article  CAS  PubMed  Google Scholar 

  14. Porkka KP, Pfeiffer MJ, Waltering KK, Vessella RL, Tammela TL, Visakorpi T . MicroRNA expression profiling in prostate cancer. Cancer Res 2007; 67: 6130–6135.

    Article  CAS  PubMed  Google Scholar 

  15. Cummins JM, He Y, Leary RJ, Pagliarini R, Diaz Jr LA, Sjoblom T et al. The colorectal microRNAome. Proc Natl Acad Sci USA 2006; 103: 3687–3692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma L, Teruya-Feldstein J, Weinberg RA . Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 2007; 449: 682–688.

    Article  CAS  PubMed  Google Scholar 

  17. Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008; 451: 147–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004; 101: 11755–11760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF et al. Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA 2005; 102: 3627–3632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lawrie CH, Soneji S, Marafioti T, Cooper CD, Palazzo S, Paterson JC et al. MicroRNA expression distinguishes between germinal center B cell-like and activated B cell-like subtypes of diffuse large B cell lymphoma. Int J Cancer 2007; 121: 1156–1161.

    Article  CAS  PubMed  Google Scholar 

  21. Chen RW, Bemis LT, Amato CM, Myint H, Tran H, Birks DK et al. Truncation in CCND1 mRNA alters miR-16-1 regulation in mantle cell lymphoma. Blood 2008; 112: 822–829.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tracey L, Aggarwal M, Garcia-Cosio M, Villuendas R, Algara P, Sanchez-Beato M et al. Somatic hypermutation signature in B-cell low-grade lymphomas. Haematologica 2008; 93: 1186–1194.

    Article  CAS  PubMed  Google Scholar 

  23. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H et al. WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. IARC Press: Lyon, 2008.

    Google Scholar 

  24. Klein U, Rajewsky K, Kuppers R . Human immunoglobulin (Ig)M+IgD+ peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells. J Exp Med 1998; 188: 1679–1689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Ach RA, Wang H, Curry B . Measuring microRNAs: comparisons of microarray and quantitative PCR measurements, and of different total RNA prep methods. BMC Biotechnol 2008; 8: 69.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rodriguez A, Villuendas R, Yanez L, Gomez ME, Diaz R, Pollan M et al. Molecular heterogeneity in chronic lymphocytic leukemia is dependent on BCR signaling: clinical correlation. Leukemia 2007; 21: 1984–1991.

    Article  CAS  PubMed  Google Scholar 

  27. Ferreira BI, Garcia JF, Suela J, Mollejo M, Camacho FI, Carro A et al. Comparative genome profiling across subtypes of low-grade B-cell lymphoma identifies type-specific and common aberrations that target genes with a role in B-cell neoplasia. Haematologica 2008; 93: 670–679.

    Article  CAS  PubMed  Google Scholar 

  28. Tusher VG, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 2001; 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saeed AI, Sharov V, White J, Li J, Liang W, Bhagabati N et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 2003; 34: 374–378.

    Article  CAS  PubMed  Google Scholar 

  30. Storey JD . Direct approach to false discovery rates. J R Statist Soc B 2002; 64 (Part 3): 479–498.

    Article  Google Scholar 

  31. Creighton CJ, Nagaraja AK, Hanash SM, Matzuk MM, Gunaratne PH . A bioinformatics tool for linking gene expression profiling results with public databases of microRNA target predictions. Rna 2008; 14: 2290–2296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Garzon R, Fabbri M, Cimmino A, Calin GA, Croce CM . MicroRNA expression and function in cancer. Trends Mol Med 2006; 12: 580–587.

    Article  CAS  PubMed  Google Scholar 

  33. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Aggarwal M, Villuendas R, Gomez G, Rodriguez-Pinilla SM, Sanchez-Beato M, Alvarez D et al. TCL1A expression delineates biological and clinical variability in B-cell lymphoma. Mod Pathol 2009; 22: 206–215.

    Article  CAS  PubMed  Google Scholar 

  35. Diaz-Uriarte R . SignS: a parallelized, open-source, freely available, web-based tool for gene selection and molecular signatures for survival and censored data. BMC Bioinformatics 2008; 9: 30.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Abba MC, Sun H, Hawkins KA, Drake JA, Hu Y, Nunez MI et al. Breast cancer molecular signatures as determined by SAGE: correlation with lymph node status. Mol Cancer Res 2007; 5: 881–890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bienkowska JR, Dalgin GS, Batliwalla F, Allaire N, Roubenoff R, Gregersen PK et al. Convergent Random Forest predictor: methodology for predicting drug response from genome-scale data applied to anti-TNF response. Genomics 2009; 94: 423–432.

    Article  CAS  PubMed  Google Scholar 

  38. Hothorn T, Buhlmann P, Dudoit S, Molinaro A, van der Laan MJ . Survival ensembles. Biostatistics 2006; 7: 355–373.

    Article  PubMed  Google Scholar 

  39. Hoster E, Dreyling M, Klapper W, Gisselbrecht C, van Hoof A, Kluin-Nelemans HC et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood 2008; 111: 558–565.

    Article  CAS  PubMed  Google Scholar 

  40. Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 2007; 131: 1109–1123.

    Article  CAS  PubMed  Google Scholar 

  41. Pekarsky Y, Santanam U, Cimmino A, Palamarchuk A, Efanov A, Maximov V et al. Tcl1 expression in chronic lymphocytic leukemia is regulated by miR-29 and miR-181. Cancer Res 2006; 66: 11590–11593.

    Article  CAS  PubMed  Google Scholar 

  42. Sasaki Y, Calado DP, Derudder E, Zhang B, Shimizu Y, Mackay F et al. NIK overexpression amplifies, whereas ablation of its TRAF3-binding domain replaces BAFF:BAFF-R-mediated survival signals in B cells. Proc Natl Acad Sci USA 2008; 105: 10883–10888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. A microRNA polycistron as a potential human oncogene. Nature 2005; 435: 828–833.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tanzer A, Stadler PF . Molecular evolution of a microRNA cluster. J Mol Biol 2004; 339: 327–335.

    Article  CAS  PubMed  Google Scholar 

  45. Xiao C, Srinivasan L, Calado DP, Patterson HC, Zhang B, Wang J et al. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nat Immunol 2008; 9: 405–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ivanovska I, Ball AS, Diaz RL, Magnus JF, Kibukawa M, Schelter JM et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol 2008; 28: 2167–2174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Voorhoeve PM, le Sage C, Schrier M, Gillis AJ, Stoop H, Nagel R et al. A genetic screen implicates miRNA-372 and miRNA-373 as oncogenes in testicular germ cell tumors. Cell 2006; 124: 1169–1181.

    Article  CAS  PubMed  Google Scholar 

  48. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ et al. A microRNA signature of hypoxia. Mol Cell Biol 2007; 27: 1859–1867.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Winsauer G, Resch U, Hofer-Warbinek R, Schichl YM, de Martin R . XIAP regulates bi-phasic NF-kappaB induction involving physical interaction and ubiquitination of MEKK2. Cell Signal 2008; 20: 2107–2112.

    Article  CAS  PubMed  Google Scholar 

  50. Salaverria I, Zettl A, Bea S, Moreno V, Valls J, Hartmann E et al. Specific secondary genetic alterations in mantle cell lymphoma provide prognostic information independent of the gene expression-based proliferation signature. J Clin Oncol 2007; 25: 1216–1222.

    Article  CAS  PubMed  Google Scholar 

  51. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N . Widespread changes in protein synthesis induced by microRNAs. Nature 2008; 455: 58–63.

    Article  CAS  PubMed  Google Scholar 

  52. Homig-Holzel C, Hojer C, Rastelli J, Casola S, Strobl LJ, Muller W et al. Constitutive CD40 signaling in B cells selectively activates the noncanonical NF-kappaB pathway and promotes lymphomagenesis. J Exp Med 2008; 205: 1317–1329.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Basso K, Klein U, Niu H, Stolovitzky GA, Tu Y, Califano A et al. Tracking CD40 signaling during germinal center development. Blood 2004; 104: 4088–4096.

    Article  CAS  PubMed  Google Scholar 

  54. Rinaldi A, Poretti G, Kwee I, Zucca E, Catapano CV, Tibiletti MG et al. Concomitant MYC and microRNA cluster miR-17-92 (C13orf25) amplification in human mantle cell lymphoma. Leuk Lymphoma 2007; 48: 410–412.

    Article  PubMed  Google Scholar 

  55. Ventura A, Young AG, Winslow MM, Lintault L, Meissner A, Erkeland SJ et al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 2008; 132: 875–886.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Navarro A, Bea S, Fernandez V, Prieto M, Salaverria I, Jares P et al. MicroRNA expression, chromosomal alterations, and immunoglobulin variable heavy chain hypermutations in mantle cell lymphomas. Cancer Res 2009; 69: 7071–7078.

    Article  CAS  PubMed  Google Scholar 

  57. Zhao JJ, Lin J, Lwin T, Yang H, Guo J, Kong W et al. microRNA expression profile and identification of miR-29 as a prognostic marker and pathogenetic factor by targeting CDK6 in mantle cell lymphoma. Blood 2010; 115: 2630–2639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Basso K, Sumazin P, Morozov P, Schneider C, Maute RL, Kitagawa Y et al. Identification of the human mature B cell miRNome. Immunity 2009; 30: 744–752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Visone R, Pallante P, Vecchione A, Cirombella R, Ferracin M, Ferraro A et al. Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene 2007; 26: 7590–7595.

    Article  CAS  PubMed  Google Scholar 

  60. Kota J, Chivukula RR, O’Donnell KA, Wentzel EA, Montgomery CL, Hwang HW et al. Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 2009; 137: 1005–1017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Katada T, Ishiguro H, Kuwabara Y, Kimura M, Mitui A, Mori Y et al. microRNA expression profile in undifferentiated gastric cancer. Int J Oncol 2009; 34: 537–542.

    CAS  PubMed  Google Scholar 

  62. Landais S, Landry S, Legault P, Rassart E . Oncogenic potential of the miR-106-363 cluster and its implication in human T-cell leukemia. Cancer Res 2007; 67: 5699–5707.

    Article  CAS  PubMed  Google Scholar 

  63. Sun Y, Wu J, Wu SH, Thakur A, Bollig A, Huang Y et al. Expression profile of microRNAs in c-Myc induced mouse mammary tumors. Breast Cancer Res Treat 2009; 118: 185–196.

    Article  CAS  PubMed  Google Scholar 

  64. Baek D, Villen J, Shin C, Camargo FD, Gygi SP, Bartel DP . The impact of microRNAs on protein output. Nature 2008; 455: 64–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Spanish National Tumour Bank Network (CNIO), the Hospitals of Gregorio Marañon and La Paz, Madrid, Spain, and Virgen de la Salud, Toledo, for sample retrieval and tumor banking; Santiago Montes-Moreno and Socorro M Rodríguez-Pinilla for reviewing and confirming the diagnosis of the samples; Orlando Domínguez for help with the genomic studies; Maria J Artiga for qPCR procedures and Núria Malats for survival analysis; the CNIO confocal microscopy and flow cytometry units. This study was supported by grants from the Ministerio de Sanidad y Consumo (RETICS, PI051623, PI052800); (FI08/00038) (LDL) and Fundación Mutua Madrileña (LDL), (CP06/00002) (NM); the Ministerio de Ciencia y Tecnología (SAF2005-00221, SAF2008-03871, SAF2007-65957-C02-02), Fundación la Caixa; the National Institute of Bioinformatics (GG-L); Marie-Curie PhD ESRT (MEST-2-CT-2004-6423) (BIF); the Ministerio de Ciencia e Innovación PI08-0440 (JCC), Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M A Piris.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Leukemia website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Lisio, L., Gómez-López, G., Sánchez-Beato, M. et al. Mantle cell lymphoma: transcriptional regulation by microRNAs. Leukemia 24, 1335–1342 (2010). https://doi.org/10.1038/leu.2010.91

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/leu.2010.91

Keywords

This article is cited by

Search

Quick links