Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Infant toenails as a biomarker of in utero arsenic exposure

Abstract

A growing body of evidence suggests that in utero and early-life exposure to arsenic may have detrimental effects on children, even at the low to moderate levels common in the United States and elsewhere. In a sample of 170 mother–infant pairs from New Hampshire, we determined infant exposure to in utero arsenic by evaluating infant toenails as a biomarker using inductively coupled plasma mass spectrometry. Infant toenail arsenic concentration correlated with maternal postpartum toenail concentrations (Spearman’s correlation coefficient 0.34). In adjusted linear models, a doubling of maternal toenail arsenic concentration was associated with a 53.8% increase in infant toenail arsenic concentration as compared with 20.4% for a doubling of maternal urine arsenic concentration. In a structural equation model, a doubling of the latent variable integrating maternal toenail and urine arsenic concentrations was associated with a 67.5% increase in infant toenail arsenic concentration. A similar correlation between infant and maternal postpartum toenail concentrations was observed in a validation cohort of 130 mother–infant pairs from Rhode Island. In utero exposure to arsenic occurs through maternal water and dietary sources, and infant toenails appear to be a reliable biomarker for estimating arsenic exposure during the critical window of gestation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Abbreviations

AsIII+:

arsenite

AsV+:

arsenate

BMI:

body mass index

DMA:

dimethylarsinic acid

HPLC:

high performance liquid chromatography

iAs:

inorganic arsenic

ICPMS:

inductively coupled plasma mass spectrometry

LoWeSS:

locally weighted scatterplot smoothing

MMA:

monomethylarsonic acid

NHBCS:

New Hampshire Birth Cohort Study

RICHS:

Rhode Island Child Health Study

SEM:

structural equation modeling

TEA:

Trace Element Analysis.

References

  1. Hall M, Gamble M, Slavkovich V, Liu X, Levy D, Cheng Z et al. Determinants of arsenic metabolism: blood arsenic metabolites, plasma folate, cobalamin, and homocysteine concentrations in maternal-newborn pairs. Environ Health Perspect 2007; 115: 1503–1509.

    Article  CAS  Google Scholar 

  2. Concha G, Vogler G, Lezcano D, Nermell B, Vahter M . Exposure to inorganic arsenic metabolites during early human development. Toxicol Sci 1998; 44: 185–190.

    Article  CAS  Google Scholar 

  3. Rahman M, Sohel N, Yunus M, Chowdhury ME, Hore SK, Zaman K et al. Increased childhood mortality and arsenic in drinking water in matlab, Bangladesh: a population-based cohort study. PLoS One 2013; 8: e55014.

    Article  CAS  Google Scholar 

  4. Hamadani JD, Tofail F, Nermell B, Gardner R, Shiraji S, Bottai M et al. Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: a population-based cohort study. Int J Epidemiol 2011; 40: 1593–1604.

    Article  CAS  Google Scholar 

  5. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, Kline J et al. Water arsenic exposure and intellectual function in 6-year-old children in Araihazar, Bangladesh. Environ Health Perspect 2007; 115: 285–289.

    Article  CAS  Google Scholar 

  6. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A et al. Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 2004; 112: 1329–1333.

    Article  CAS  Google Scholar 

  7. von Ehrenstein OS, Poddar S, Yuan Y, Mazumder DG, Eskenazi B, Basu A et al. Children’s intellectual function in relation to arsenic exposure. Epidemiology 2007; 18: 44–51.

    Article  Google Scholar 

  8. Parvez F, Wasserman GA, Factor-Litvak P, Liu X, Slavkovich V, Siddique AB et al. Arsenic exposure and motor function among children in Bangladesh. Environ Health Perspect 2011; 119: 1665–1670.

    Article  CAS  Google Scholar 

  9. Farzan SF, Karagas MR, Chen Y . In utero and early life arsenic exposure in relation to long-term health and disease. Toxicol Appl Pharmacol 2013; 272: 384–390.

    Article  CAS  Google Scholar 

  10. Vahter M . Health effects of early life exposure to arsenic. Basic Clin Pharmacol Toxicol 2008; 102: 204–211.

    Article  CAS  Google Scholar 

  11. Vahter M, Nermell B, Hamadam J, Raqib R . Arsenic metabolism and toxicity in early life-interactions with nutrition. Epidemiology 2009; 20: S247–S247.

    Article  Google Scholar 

  12. Rahman A, Persson LA, Nermell B, El Arifeen S, Ekstrom EC, Smith AH et al. Arsenic exposure and risk of spontaneous abortion, stillbirth, and infant mortality. Epidemiology 2010; 21: 797–804.

    Article  Google Scholar 

  13. Rahman A, Vahter M, Ekstrom EC, Persson LA . Arsenic exposure in pregnancy increases the risk of lower respiratory tract infection and diarrhea during infancy in Bangladesh. Environ Health Perspect 2011; 119: 719–724.

    Article  CAS  Google Scholar 

  14. Rahman A, Vahter M, Ekstrom EC, Rahman M, Golam Mustafa AH, Wahed MA et al. Association of arsenic exposure during pregnancy with fetal loss and infant death: a cohort study in Bangladesh. Am J Epidemiol 2007; 165: 1389–1396.

    Article  Google Scholar 

  15. Rahman A, Vahter M, Smith AH, Nermell B, Yunus M, El Arifeen S et al. Arsenic exposure during pregnancy and size at birth: a prospective cohort study in Bangladesh. Am J Epidemiol 2009; 169: 304–312.

    Article  Google Scholar 

  16. Saha KK, Engstrom A, Hamadani JD, Tofail F, Rasmussen KM, Vahter M . Pre- and postnatal arsenic exposure and body size to 2 years of age: a cohort study in rural bangladesh. Environ Health Perspect 2012; 120: 1208–1214.

    Article  CAS  Google Scholar 

  17. Huyck KL, Kile ML, Mahiuddin G, Quamruzzaman Q, Rahman M, Breton CV et al. Maternal arsenic exposure associated with low birth weight in Bangladesh. J Occup Environ Med 2007; 49: 1097–1104.

    Article  CAS  Google Scholar 

  18. Kippler M, Wagatsuma Y, Rahman A, Nermell B, Persson LA, Raqib R et al. Environmental exposure to arsenic and cadmium during pregnancy and fetal size: a longitudinal study in rural Bangladesh. Reprod Toxicol 2012; 34: 504–511.

    Article  CAS  Google Scholar 

  19. Kile ML, Houseman EA, Rodrigues E, Smith TJ, Quamruzzaman Q, Rahman M et al. Toenail arsenic concentrations, GSTT1 gene polymorphisms, and arsenic exposure from drinking water. Cancer Epidemiol Biomarkers Prev 2005; 14: 2419–2426.

    Article  CAS  Google Scholar 

  20. Garland M, Morris JS, Rosner BA, Stampfer MJ, Spate VL, Baskett CJ et al. Toenail trace element levels as biomarkers: reproducibility over a 6-year period. Cancer Epidemiol Biomarkers Prev 1993; 2: 493–497.

    CAS  PubMed  Google Scholar 

  21. Karagas MR, Le CX, Morris S, Blum J, Lu X, Spate V et al. Markers of low level arsenic exposure for evaluating human cancer risks in a US population. Int J Occup Med Environ Health 2001; 14: 171–175.

    CAS  PubMed  Google Scholar 

  22. Seaborg B, Bodurtha J . Nail size in normal infants. Establishing standards for healthy term infants. Clin Pediatr (Phila) 1989; 28: 142–145.

    Article  CAS  Google Scholar 

  23. Hamilton JB, Terada H, Mestler GE . Studies of growth throughout the lifespan in Japanese: growth and size of nails and their relationship to age, sex, heredity, and other factors. J Gerontol 1955; 10: 401–415.

    Article  CAS  Google Scholar 

  24. Orloff K, Mistry K, Metcalf S . Biomonitoring for environmental exposures to arsenic. J Toxicol Environ Health B 2009; 12: 509–524.

    Article  CAS  Google Scholar 

  25. Intarasunanont P, Navasumrit P, Waraprasit S, Chaisatra K, Suk WA, Mahidol C et al. Effects of arsenic exposure on DNA methylation in cord blood samples from newborn babies and in a human lymphoblast cell line. Environ Health 2012; 11: 31.

    Article  CAS  Google Scholar 

  26. Samanta G, Das D, Mandal BK, Chowdhury TR, Chakraborti D, Pal A et al. Arsenic in the breast milk of lactating women in arsenic-affected areas of West Bengal, India and its effect on infants. J Environ Sci Health A Tox Hazard Subst Environ Eng 2007; 42: 1815–1825.

    Article  CAS  Google Scholar 

  27. Gilbert-Diamond D, Cottingham KL, Gruber JF, Punshon T, Sayarath V, Gandolfi AJ et al. Rice consumption contributes to arsenic exposure in US women. Proc Natl Acad Sci USA 2011; 108: 20656–20660.

    Article  CAS  Google Scholar 

  28. Davis MA, Mackenzie TA, Cottingham KL, Gilbert-Diamond D, Punshon T, Karagas MR . Rice consumption and urinary arsenic concentrations in U.S. children. Environ Health Perspect 2012; 120: 1418–1424.

    Article  CAS  Google Scholar 

  29. Marsit CJ, Maccani MA, Padbury JF, Lester BM . Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS One 2012; 7: e33794.

    Article  CAS  Google Scholar 

  30. Amaral AF, Porta M, Silverman DT, Milne RL, Kogevinas M, Rothman N et al. Pancreatic cancer risk and levels of trace elements. Gut 2011; 61: 1583–1588.

    Article  Google Scholar 

  31. Le XC, Lu X, Ma M, Cullen WR, Aposhian HV, Zheng B . Speciation of key arsenic metabolic intermediates in human urine. Anal Chem 2000; 72: 5172–5177.

    Article  CAS  Google Scholar 

  32. Navas-Acien A, Francesconi KA, Silbergeld EK, Guallar E . Seafood intake and urine concentrations of total arsenic, dimethylarsinate and arsenobetaine in the US population. Environ Res 2011; 111: 110–118.

    Article  CAS  Google Scholar 

  33. Vittinghoff E, Glidden DV, Shiboski SC, McCulloch CE . Linear, Logistic, Survival, and Repeated Measures Models. Springer: New York, NY. 2012.

    Google Scholar 

  34. Gardner RM, Nermell B, Kippler M, Grander M, Li L, Ekstrom EC et al. Arsenic methylation efficiency increases during the first trimester of pregnancy independent of folate status. Reprod Toxicol 2011; 31: 210–218.

    Article  CAS  Google Scholar 

  35. Haftenberger M, Heuer T, Heidemann C, Kube F, Krems C, Mensink GB . Relative validation of a food frequency questionnaire for national health and nutrition monitoring. Nutr J 2010; 9: 36.

    Article  Google Scholar 

  36. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL . Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect 2005; 113: 192–200.

    Article  CAS  Google Scholar 

  37. Ahamed S, Kumar Sengupta M, Mukherjee A, Amir Hossain M, Das B, Nayak B et al. Arsenic groundwater contamination and its health effects in the state of Uttar Pradesh (UP) in upper and middle Ganga plain, India: a severe danger. Sci Total Environ 2006; 370: 310–322.

    Article  CAS  Google Scholar 

  38. Mazumder DN, Majumdar KK, Santra SC, Kol H, Vicheth C . Occurrence of arsenicosis in a rural village of Cambodia. J Environ Sci Health A Tox Hazard Subst Environ Eng 2009; 44: 480–487.

    Article  CAS  Google Scholar 

  39. Pearce DC, Dowling K, Gerson AR, Sim MR, Sutton SR, Newville M et al. Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area. Sci Total Environ 2010; 408: 2590–2599.

    Article  CAS  Google Scholar 

  40. Wickre JB, Folt CL, Sturup S, Karagas MR . Environmental exposure and fingernail analysis of arsenic and mercury in children and adults in a Nicaraguan gold mining community. Arch Environ Health 2004; 59: 400–409.

    Article  CAS  Google Scholar 

  41. Tsuji JS, Van Kerkhove MD, Kaetzel RS, Scrafford CG, Mink PJ, Barraj LM et al. Evaluation of exposure to arsenic in residential soil. Environ Health Perspect 2005; 113: 1735–1740.

    Article  CAS  Google Scholar 

  42. Karagas MR, Tosteson TD, Blum J, Klaue B, Weiss JE, Stannard V et al. Measurement of low levels of arsenic exposure: a comparison of water and toenail concentrations. Am J Epidemiol 2000; 152: 84–90.

    Article  CAS  Google Scholar 

  43. Schlawicke Engstrom K, Broberg K, Concha G, Nermell B, Warholm M, Vahter M . Genetic polymorphisms influencing arsenic metabolism: evidence from Argentina. Environ Health Perspect 2007; 115: 599–605.

    Article  Google Scholar 

  44. Gamble MV, Liu X, Slavkovich V, Pilsner JR, Ilievski V, Factor-Litvak P et al. Folic acid supplementation lowers blood arsenic. Am J Clin Nutr 2007; 86: 1202–1209.

    Article  CAS  Google Scholar 

  45. Hall MN, Liu X, Slavkovich V, Ilievski V, Pilsner JR, Alam S et al. Folate, cobalamin, cysteine, homocysteine, and arsenic metabolism among children in Bangladesh. Environ Health Perspect 2009; 117: 825–831.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants P20 ES018175, P01 ES022832, and R01 ES022223 from the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health (NIH); grant R25CA134286 from the National Cancer Institute (NCI), NIH; and RD-83459901 and RD-83544201 from the Environmental Protection Agency (EPA), and grant R01 MH094609 from the National Institute of Mental Health (NIMH). MA Davis was supported by Award Number K01AT006162 from the NIH. The NIEHS, NIMH, NIH, NCI, and EPA were not involved in the design and conduct of the study or collection, management, analysis, and interpretation of the data. The contents of this manuscript are solely the responsibility of the authors and do not necessarily represent the official views of the NIEHS, NIMH, NIH, NCI, and EPA. In addition, the EPA does not endorse the purchase of any commercial products or services mentioned in the publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret R Karagas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davis, M., Li, Z., Gilbert-Diamond, D. et al. Infant toenails as a biomarker of in utero arsenic exposure. J Expo Sci Environ Epidemiol 24, 467–473 (2014). https://doi.org/10.1038/jes.2014.38

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/jes.2014.38

Keywords

This article is cited by

Search

Quick links