Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Animal Models

TRPV1 activation counters diet-induced obesity through sirtuin-1 activation and PRDM-16 deacetylation in brown adipose tissue

Abstract

Background/objective:

An imbalance between energy intake and expenditure leads to obesity. Increasing metabolism and thermogenesis in brown adipose tissue (BAT) can help in overcoming obesity. Here, we investigated the effect of activation of transient receptor potential vanilloid subfamily 1 (TRPV1) in the upregulation of thermogenic proteins in BAT to counter diet-induced obesity.

Subjects/methods:

We investigated the effect of dietary supplementation of capsaicin (CAP) (TRPV1 agonist) on the expression of metabolically important thermogenic proteins in BAT of wild-type and TRPV1−/− mice that received either a normal chow or high-fat (±CAP; TRPV1 activator) diet by immunoblotting. We measured the metabolic activity, respiratory quotient and BAT lipolysis.

Results:

CAP antagonized high-fat diet (HFD)-induced obesity without decreasing energy intake in mice. HFD suppressed TRPV1 expression and activity in BAT and CAP countered this effect. HFD-feeding caused glucose intolerance, hypercholesterolemia and decreased the plasma concentration of glucagon-like peptide-1 and CAP countered these effects. HFD suppressed the expression of metabolically important thermogenic genes, ucp-1, bmp8b, sirtuin-1 (SIRT-1), PPARγ coactivator 1α and PR domain containing zinc finger protein 16 (prdm-16) in BAT and CAP prevented this effect. CAP increased the phosphorylation of SIRT-1 and induced an interaction between peroxisome proliferator activated receptor gamma (PPARγ) with PRDM-16. Further, CAP treatment, in vitro, decreased the acetylation of PRDM-16, which was antagonized by inhibition of TRPV1 by capsazepine, chelation of intracellular Ca2+ by cell permeable BAPTA-AM or the inhibition of SIRT-1 by EX527. Further, CAP supplementation, post HFD, promoted weight loss and enhanced the respiratory exchange ratio. CAP did not have any effect in TRPV1−/− mice.

Conclusions:

Our data show that activation of TRPV1 in BAT enhances the expression of SIRT-1, which facilitates the deacetylation and interaction of PPARγ and PRDM-16. These data suggest that TRPV1 activation is a novel strategy to counter diet-induced obesity by enhancing metabolism and energy expenditure.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Broeders E, Bouvy ND, van Marken Lichtenbelt WD . Endogenous ways to stimulate brown adipose tissue in humans. Ann Med 2015; 47: 123–132.

    Article  CAS  PubMed  Google Scholar 

  2. Andrade JM, Frade AC, Guimaraes JB, Freitas KM, Lopes MT, Guimaraes AL et al. Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT-1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet. Eur J Nutr 2014; 53: 1503–1510.

    Article  CAS  PubMed  Google Scholar 

  3. Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y et al. Brown remodeling of white adipose tissue by SIRT-1-dependent deacetylation of Ppargamma. Cell 2012; 150: 620–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nemoto S, Fergusson MM, Finkel T . SIRT-1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 2005; 280: 16456–16460.

    Article  CAS  PubMed  Google Scholar 

  5. Becerril S, Gomez-Ambrosi J, Martin M, Moncada R, Sesma P, Burrell MA et al. Role of PRDM16 in the activation of brown fat programming. Relevance to the development of obesity. Histol Histopathol 2013; 28: 1411–1425.

    CAS  PubMed  Google Scholar 

  6. Richard D, Picard F . Brown fat biology and thermogenesis. Front Biosci 2011; 16: 1233–1260.

    Article  CAS  Google Scholar 

  7. Kajimura S, Seale P, Kubota K, Lunsford E, Frangioni JV, Gygi SP et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature 2009; 460: 1154–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature 2008; 454: 961–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Baskaran P, Krishnan V, Ren J, Thyagarajan B . Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 dependent mechanism. Br J Pharmacol 2016; 173: 2369–2389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ohno H, Shinoda K, Spiegelman BM, Kajimura S . PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 2012; 15: 395–404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T et al. PRDM16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab 2014; 19: 593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Derbenev AV, Zsombok A . Potential therapeutic value of TRPV1 and TRPA1 in diabetes mellitus and obesity. Semin Immunopathol 2015; 38: 397–406.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lee E, Jung DY, Kim JH, Patel PR, Hu X, Lee Y et al. Transient receptor potential vanilloid type-1 channel regulates diet-induced obesity, insulin resistance, and leptin resistance. Faseb J 2015; 29: 3182–3192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Baboota RK, Singh DP, Sarma SM, Kaur J, Sandhir R, Boparai RK et al. Capsaicin induces ‘brite’ phenotype in differentiating 3T3-L1 preadipocytes. PLoS ONE 2014; 9: e103093.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bargut TC, Mandarim-de-Lacerda CA, Aguila MB . A high-fish-oil diet prevents adiposity and modulates white adipose tissue inflammation pathways in mice. J Nutr Biochem 2015; 26: 960–969.

    Article  CAS  PubMed  Google Scholar 

  16. de Guglielmo G, Melis M, De Luca MA, Kallupi M, Li HW, Niswender K et al. PPARgamma activation attenuates opioid consumption and modulates mesolimbic dopamine transmission. Neuropsychopharmacology 2015; 40: 927–937.

    Article  CAS  PubMed  Google Scholar 

  17. Saito M, Yoneshiro T . Capsinoids and related food ingredients activating brown fat thermogenesis and reducing body fat in humans. Curr Opin Lipidol 2013; 24: 71–77.

    Article  CAS  PubMed  Google Scholar 

  18. Turdi S, Kandadi MR, Zhao J, Huff AF, Du M, Ren J . Deficiency in AMP-activated protein kinase exaggerates high fat diet-induced cardiac hypertrophy and contractile dysfunction. J Mol Cell Cardiol 2011; 50: 712–722.

    Article  CAS  PubMed  Google Scholar 

  19. Ren J . Leptin and hyperleptinemia—from friend to foe for cardiovascular function. J Endocrinol 2004; 181: 1–10.

    Article  CAS  PubMed  Google Scholar 

  20. Muller TD, Lee SJ, Jastroch M, Kabra D, Stemmer K, Aichler M et al. p62 links beta-adrenergic input to mitochondrial function and thermogenesis. J Clin Invest 2013; 123: 469–478.

    Article  PubMed  Google Scholar 

  21. Alberdi G, Rodriguez VM, Miranda J, Macarulla MT, Churruca I, Portillo MP . Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem 2013; 141: 1530–1535.

    Article  CAS  PubMed  Google Scholar 

  22. De Matteis R, Lucertini F, Guescini M, Polidori E, Zeppa S, Stocchi V et al. Exercise as a new physiological stimulus for brown adipose tissue activity. Nutr Metab Cardiovasc Dis 2013; 23: 582–590.

    Article  CAS  PubMed  Google Scholar 

  23. Toh SY, Gong J, Du G, Li JZ, Yang S, Ye J et al. Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS ONE 2008; 3: e2890.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Chan SC, Lin SC, Li P . Regulation of Cidea protein stability by the ubiquitin-mediated proteasomal degradation pathway. Biochem J 2007; 408: 259–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rosell M, Jones MC, Parker MG . Role of nuclear receptor corepressor RIP140 in metabolic syndrome. Biochim Biophys Acta 2011; 1812: 919–928.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Marsili A, Aguayo-Mazzucato C, Chen T, Kumar A, Chung M, Lunsford EP et al. Mice with a targeted deletion of the type 2 deiodinase are insulin resistant and susceptible to diet induced obesity. PLoS ONE 2011; 6: e20832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Christoffolete MA, Linardi CC, de Jesus L, Ebina KN, Carvalho SD, Ribeiro MO et al. Mice with targeted disruption of the Dio2 gene have cold-induced overexpression of the uncoupling protein 1 gene but fail to increase brown adipose tissue lipogenesis and adaptive thermogenesis. Diabetes 2004; 53: 577–584.

    Article  CAS  PubMed  Google Scholar 

  28. Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vazquez MJ et al. BMP8b increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 2012; 149: 871–885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Xue R, Wan Y, Zhang S, Zhang Q, Ye H, Li Y . Role of bone morphogenetic protein 4 in the differentiation of brown fat-like adipocytes. Am J Physiol Endocrinol Metabol 2014; 306: E363–E372.

    Article  CAS  Google Scholar 

  30. Mottillo EP, Granneman JG . Intracellular fatty acids suppress beta-adrenergic induction of PKA-targeted gene expression in white adipocytes. Am J Physiol Endocrinol Metab 2011; 301: E122–E131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yaney GC, Civelek VN, Richard AM, Dillon JS, Deeney JT, Hamilton JA et al. Glucagon-like peptide 1 stimulates lipolysis in clonal pancreatic beta-cells (HIT). Diabetes 2001; 50: 56–62.

    Article  CAS  PubMed  Google Scholar 

  32. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC et al. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT-1 activity. Nature 2009; 458: 1056–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee GR, Jang SH, Kim CJ, Kim AR, Yoon DJ, Park NH et al. Capsaicin suppresses the migration of cholangiocarcinoma cells by down-regulating matrix metalloproteinase-9 expression via the AMPK-NF-kappaB signaling pathway. Clin Exp Metastasis 2014; 31: 897–907.

    Article  CAS  PubMed  Google Scholar 

  34. Vernochet C, McDonald ME, Farmer SR . Brown adipose tissue: a promising target to combat obesity. Drug News Perspect 2010; 23: 409–417.

    Article  CAS  PubMed  Google Scholar 

  35. Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 2014; 156: 304–316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Walpole CS, Bevan S, Bovermann G, Boelsterli JJ, Breckenridge R, Davies JW et al. The discovery of capsazepine, the first competitive antagonist of the sensory neuron excitants capsaicin and resiniferatoxin. J Med Chem 1994; 37: 1942–1954.

    Article  CAS  PubMed  Google Scholar 

  37. Thyagarajan B, Malli R, Schmidt K, Graier WF, Groschner K . Nitric oxide inhibits capacitative Ca2+ entry by suppression of mitochondrial Ca2+ handling. Br J Pharmacol 2002; 137: 821–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Liu GZ, Hou TT, Yuan Y, Hang PZ, Zhao JJ, Sun L et al. Fenofibrate inhibits atrial metabolic remodelling in atrial fibrillation through PPAR-alpha/sirtuin-1/PGC-1 alpha pathway. Br J Pharmacol 2016; 173: 1095–1109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jimenez-Gomez Y, Mattison JA, Pearson KJ, Martin-Montalvo A, Palacios HH, Sossong AM et al. Resveratrol improves adipose insulin signaling and reduces the inflammatory response in adipose tissue of rhesus monkeys on high-fat, high-sugar diet. Cell Metab 2013; 18: 533–545.

    Article  CAS  PubMed  Google Scholar 

  40. de Ligt M, Timmers S, Schrauwen P . Resveratrol and obesity: can resveratrol relieve metabolic disturbances? Biochim Biophys Acta 2015; 1852: 1137–1144.

    Article  CAS  PubMed  Google Scholar 

  41. Villanueva CJ, Vergnes L, Wang J, Drew BG, Hong C, Tu Y et al. Adipose subtype-selective recruitment of TLE3 or PRDM16 by PPARgamma specifies lipid storage versus thermogenic gene programs. Cell Metab 2013; 17: 423–435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Li L, Chen J, Ni Y, Feng X, Zhao Z, Wang P et al. TRPV1 activation prevents nonalcoholic fatty liver through UCP2 upregulation in mice. Pflugers Arch 2012; 463: 727–732.

    Article  CAS  PubMed  Google Scholar 

  43. Toth A, Boczan J, Kedei N, Lizanecz E, Bagi Z, Papp Z et al. Expression and distribution of vanilloid receptor 1 (TRPV1) in the adult rat brain. Brain Res Mol Brain Res 2005; 135: 162–168.

    Article  CAS  PubMed  Google Scholar 

  44. Wong CO, Chen K, Lin YQ, Chao Y, Duraine L, Lu Z et al. A TRPV channel in Drosophila motor neurons regulates presynaptic resting Ca2+ levels, synapse growth, and synaptic transmission. Neuron 2014; 84: 764–777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thyagarajan B, Potian JG, Baskaran P, McArdle JJ . Capsaicin modulates acetylcholine release at the myoneural junction. Eur J Pharmacol 2014; 744: 211–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Che H, Yue J, Tse HF, Li GR . Functional TRPV and TRPM channels in human preadipocytes. Pflugers Arch 2014; 466: 947–959.

    Article  CAS  PubMed  Google Scholar 

  47. Harms M, Seale P . Brown and beige fat: development, function and therapeutic potential. Nat Med 2013; 19: 1252–1263.

    Article  CAS  PubMed  Google Scholar 

  48. Fruhbeck G, Becerril S, Sainz N, Garrastachu P, Garcia-Velloso MJ . BAT: a new target for human obesity? Trends Pharmacol Sci 2009; 30: 387–396.

    Article  PubMed  Google Scholar 

  49. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab 2007; 6: 38–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Iida S, Chen W, Nakadai T, Ohkuma Y, Roeder RG . PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with mediator subunit MED1. Genes Dev 2015; 29: 308–321.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Patsouris D, Mandard S, Voshol PJ, Escher P, Tan NS, Havekes LM et al. PPARalpha governs glycerol metabolism. J Clin Invest 2004; 114: 94–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Boesmans W, Owsianik G, Tack J, Voets T, Vanden Berghe P . TRP channels in neurogastroenterology: opportunities for therapeutic intervention. Br J Pharmacol 2011; 162: 18–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Diaz-Garcia CM, Morales-Lazaro SL, Sanchez-Soto C, Velasco M, Rosenbaum T, Hiriart M . Role for the TRPV1 channel in insulin secretion from pancreatic beta cells. J Membr Biol 2014; 247: 479–491.

    Article  CAS  PubMed  Google Scholar 

  54. Fagelskiold AJ, Kannisto K, Bostrom A, Hadrovic B, Farre C, Eweida M et al. Insulin-secreting INS-1E cells express functional TRPV1 channels. Islets 2012; 4: 56–63.

    Article  PubMed  Google Scholar 

  55. Watanabe T, Sakurada N, Kobata K . Capsaicin-, resiniferatoxin-, and olvanil-induced adrenaline secretions in rats via the vanilloid receptor. Biosci Biotechnol Biochem 2001; 65: 2443–2447.

    Article  CAS  PubMed  Google Scholar 

  56. Xu YP, Zhang JW, Li L, Ye ZY, Zhang Y, Gao X et al. Complex regulation of capsaicin on intracellular second messengers by calcium dependent and independent mechanisms in primary sensory neurons. Neurosci Lett 2012; 517: 30–35.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by funding from the AHA Southwest Affiliate Faculty Beginning Grant-in-Aid (15BGIA23250030), a thematic research project grant from the NIH/NIGMS award 8P20 (GM103432-12) and the University of Wyoming Faculty Seed Research Grant to BT and the National Basic Research Program of China (2013CB531205) to ZZ. We thank Dr Zhaojie Zhang for his technical assistance with TECAN plate reader. We also thank Dr Kurt Dolence for critically reading through the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Thyagarajan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baskaran, P., Krishnan, V., Fettel, K. et al. TRPV1 activation counters diet-induced obesity through sirtuin-1 activation and PRDM-16 deacetylation in brown adipose tissue. Int J Obes 41, 739–749 (2017). https://doi.org/10.1038/ijo.2017.16

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2017.16

This article is cited by

Search

Quick links