Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aurantio-obtusin ameliorates obesity by activating PPARα-dependent mitochondrial thermogenesis in brown adipose tissues

Abstract

Obesity contributes to the progression of various chronic diseases, and shortens life expectancy. With abundant mitochondria, brown adipose tissue (BAT) dissipates energy through heat to limit weight gain and metabolic dysfunction in obesity. Our previous studies have shown that aurantio-obtusin (AO), a bioactive ingredient in Chinese traditional medicine Cassiae semen significantly improves hepatic lipid metabolism in a steatotic mouse model. In the current study we investigated the effects of AO on lipid metabolism in the BAT of diet-induced obesity mice and in oleic acid and palmitic acid (OAPA)-stimulated primary mature BAT adipocytes. Obese mice were established by feeding a HFHS diet for 4 weeks, and then administered AO (10 mg/kg, i.g.) for another 4 weeks. We showed that AO administration significantly increased the weight of BAT and accelerated energy expenditure to protect the weight increase in the obese mice. Using RNA sequencing and molecular biology analysis we found that AO significantly enhanced mitochondrial metabolism and UCP1 expression by activating PPARα both in vivo and in vitro in the primary BAT adipocytes. Interestingly, AO administration did not improve metabolic dysfunction in the liver and white adipose tissue of obese mice after interscapular BAT excision. We demonstrated that low temperature, a trigger of BAT thermogenesis, was not a decisive factor for AO to stimulate the growth and activation of BATs. This study uncovers a regulatory network of AO in activating BAT-dependent lipid consumption and brings up a new avenue for the pharmaceutical intervention in obesity and related comorbidities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: AO improves BAT in the HFHS-induced obese mice.
Fig. 2: AO distinctly changes the DEGs involved in mitochondrial function and energy consumption.
Fig. 3: AO increases the activity of mitochondrial complexes.
Fig. 4: Effects of AO on lipid metabolism in the cold environment.
Fig. 5: Low temperature has less effect on the AO-induced therapeutic function.
Fig. 6: The function of AO is markedly diminished after BAT resection.
Fig. 7: AO improves lipid accumulation in the primary BAT adiposes.
Fig. 8: The inhibition of PPARα worsens lipid metabolism caused by AO in vivo.

Similar content being viewed by others

References

  1. Blüher M. Obesity: global epidemiology and pathogenesis. Nat Rev Endocrinol. 2019;15:288–98.

    Article  PubMed  Google Scholar 

  2. Piché ME, Tchernof A, Després JP. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ Res. 2020;126:1477–500.

    Article  PubMed  Google Scholar 

  3. Haslam DW, James WP. Obesity. Lancet 2005;366:1197–209.

    Article  PubMed  Google Scholar 

  4. Reilly JJ, El-Hamdouchi A, Diouf A, Monyeki A, Somda SA. Determining the worldwide prevalence of obesity. Lancet. 2018;391:1773–4.

    Article  PubMed  Google Scholar 

  5. Kelly T, Yang W, Chen CS, Reynolds K, He J. Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond). 2008;32:1431–7.

    Article  CAS  PubMed  Google Scholar 

  6. Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet. 2022;23:120–33.

    Article  CAS  PubMed  Google Scholar 

  7. Fink J, Seifert G, Blüher M, Fichtner-Feigl S, Marjanovic G. Obesity surgery. Dtsch Arztebl Int. 2022;119:70–80.

    PubMed  PubMed Central  Google Scholar 

  8. Lidell ME, Enerbäck S. Brown adipose tissue–a new role in humans? Nat Rev Endocrinol. 2010;6:319–25.

    Article  PubMed  Google Scholar 

  9. Lidell ME, Betz MJ, Dahlqvist Leinhard O, Heglind M, Elander L, Slawik M, et al. Evidence for two types of brown adipose tissue in humans. Nat Med. 2013;19:631–4.

    Article  CAS  PubMed  Google Scholar 

  10. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. N Engl J Med. 2009;360:1500–8.

    Article  PubMed  Google Scholar 

  11. Aldiss P, Betts J, Sale C, Pope M, Budge H, Symonds ME. Exercise-induced ‘browning’ of adipose tissues. Metabolism. 2018;81:63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84:277–359.

    Article  CAS  PubMed  Google Scholar 

  13. Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell. 2012;151:400–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chouchani ET, Kazak L, Spiegelman BM. New advances in adaptive thermogenesis: UCP1 and beyond. Cell Metab. 2019;29:27–37.

    Article  CAS  PubMed  Google Scholar 

  15. Tzeng TF, Lu HJ, Liou SS, Chang CJ, Liu IM. Cassia tora (Leguminosae) seed extract alleviates high-fat diet-induced nonalcoholic fatty liver. Food Chem Toxicol. 2013;51:194–201.

    Article  CAS  PubMed  Google Scholar 

  16. Meng Y, Liu Y, Fang N, Guo Y. Hepatoprotective effects of Cassia semen ethanol extract on non-alcoholic fatty liver disease in experimental rat. Pharm Biol. 2019;57:98–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ding M, Zhou F, Li Y, Liu C, Gu Y, Wu J, et al. Cassiae semen improves non-alcoholic fatty liver disease through autophagy-related pathway. Chin Herbal Med. 2022. https://doi.org/10.1016/j.chmed.2022.09.006.

  18. Zhou F, Ding M, Gu Y, Fan G, Liu C, Li Y, et al. Aurantio-Obtusin attenuates non-alcoholic fatty liver disease through AMPK-mediated autophagy and fatty acid oxidation pathways. Front Pharmacol. 2021;12:826628.

    Article  CAS  Google Scholar 

  19. Guo CY, Liao WT, Qiu RJ, Zhou DS, Ni WJ, Yu CP, et al. Aurantio-obtusin improves obesity and insulin resistance induced by high-fat diet in obese mice. Phytother Res. 2021;35:346–60.

    Article  CAS  PubMed  Google Scholar 

  20. Li X, Ge J, Li Y, Cai Y, Zheng Q, Huang N, et al. Integrative lipidomic and transcriptomic study unravels the therapeutic effects of saikosaponins A and D on non-alcoholic fatty liver disease. Acta Pharm Sin B 2021;11:3527–41.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T, et al. Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metab. 2014;19:593–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li YJ, Liu RP, Ding MN, Zheng Q, Wu JZ, Xue XY, et al. Tetramethylpyrazine prevents liver fibrotic injury in mice by targeting hepatocyte-derived and mitochondrial DNA-enriched extracellular vesicles. Acta Pharmacol Sin. 2022;43:2026–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Koch RE, Josefson CC, Hill GE. Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc. 2017;92:1459–74.

    Article  PubMed  Google Scholar 

  24. Vercellino I, Sazanov LA. The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol. 2022;23:141–61.

    Article  CAS  PubMed  Google Scholar 

  25. Boström P, Wu J, Jedrychowski MP, Korde A, Ye L, Lo JC, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463–8.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Rizzolo D, Kong B, Taylor RE, Brinker A, Goedken M, Buckley B, et al. Bile acid homeostasis in female mice deficient in Cyp7a1 and Cyp27a1. Acta Pharm Sin B 2021;11:3847–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bessesen DH, Van Gaal LF. Progress and challenges in anti-obesity pharmacotherapy. Lancet Diabetes Endocrinol. 2018;6:237–48.

    Article  PubMed  Google Scholar 

  28. Kahn CR, Wang G, Lee KY. Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. 2019;129:3990–4000.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang Z, Zhang H, Li B, Meng X, Wang J, Zhang Y, et al. Berberine activates thermogenesis in white and brown adipose tissue. Nat Commun. 2014;5:5493.

    Article  CAS  PubMed  Google Scholar 

  30. Chen CC, Kuo CH, Leu YL, Wang SH. Corylin reduces obesity and insulin resistance and promotes adipose tissue browning through SIRT-1 and β3-AR activation. Pharmacol Res. 2021;164:105291.

    Article  CAS  PubMed  Google Scholar 

  31. Liu X, Huang Y, Liang X, Wu Q, Wang N, Zhou LJ, et al. Atractylenolide III from Atractylodes macrocephala Koidz promotes the activation of brown and white adipose tissue through SIRT1/PGC-1α signaling pathway. Phytomedicine. 2022;104:154289.

    Article  CAS  PubMed  Google Scholar 

  32. Mottillo EP, Bloch AE, Leff T, Granneman JG. Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) α and δ in brown adipocytes to match fatty acid oxidation with supply. J Biol Chem. 2012;287:25038–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu Y, Li Y, Liang J, Sun Z, Sun C. Non-histone lysine crotonylation is involved in the regulation of white fat browning. Int J Mol Sci. 2022;23:12733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mick DU, Vukotic M, Piechura H, Meyer HE, Warscheid B, Deckers M, et al. Coa3 and Cox14 are essential for negative feedback regulation of COX1 translation in mitochondria. J Cell Biol. 2010;191:141–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ostergaard E, Weraarpachai W, Ravn K, Born AP, Jønson L, Duno M, et al. Mutations in COA3 cause isolated complex IV deficiency associated with neuropathy, exercise intolerance, obesity, and short stature. J Med Genet. 2015;52:203–7.

    Article  CAS  PubMed  Google Scholar 

  36. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, et al. Transcriptional control of brown fat determination by PRDM16. Cell Metab. 2007;6:38–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McKeage K, Keating GM. Fenofibrate: a review of its use in dyslipidaemia. Drugs. 2011;71:1917–46.

    Article  CAS  PubMed  Google Scholar 

  38. Gawrieh S, Noureddin M, Loo N, Mohseni R, Awasty V, Cusi K, et al. Saroglitazar, a PPAR-α/γ agonist, for treatment of NAFLD: a randomized controlled double-blind phase 2 trial. Hepatology. 2021;74:1809–24.

    Article  CAS  PubMed  Google Scholar 

  39. Ahmadian M, Abbott MJ, Tang T, Hudak CS, Kim Y, Bruss M, et al. Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 2011;13:739–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wang X, Liu R, Wei C, Xu M, Li Y. Exogenous nucleotides improved the oxidative stress and Sirt-1 protein level of brown adipose tissue on senescence-accelerated mouse prone-8 (SAMP8) mice. Nutrients. 2022;14:2796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhao Y, Zhao MF, Jiang S, Wu J, Liu J, Yuan XW, et al. Liver governs adipose remodelling via extracellular vesicles in response to lipid overload. Nat Commun. 2020;11:719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Azzu V, Vacca M, Virtue S, Allison M, Vidal-Puig A. Adipose tissue-liver cross talk in the control of whole-body metabolism: implications in nonalcoholic fatty liver disease. Gastroenterology. 2020;158:1899–912.

    Article  CAS  PubMed  Google Scholar 

  43. White JD, Dewal RS, Stanford KI. The beneficial effects of brown adipose tissue transplantation. Mol Asp Med. 2019;68:74–81.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (Grant No. 82274186 to XJYL, 82274201 and 82004029 to RPL); the National High-Level Talents Special Support Program to XJYL; Beijing Nova Program of Science & Technology (Z201100006820025 and Z211100002121167 to RPL); Young Talents Promotion Project of China Association of Traditional Chinese Medicine (Grant No. 2020-QNRC2-01 to XJYL and CACM-2020-QNRC2-04 to RPL); Beijing Municipal Science & Technology Commission (Grant No. 7212174 to XJYL); Innovation Team and Talents Cultivation Program of National Administration of Traditional Chinese Medicine (Grant No. ZYYCXTD-C-202006 to XJYL).

Author information

Authors and Affiliations

Authors

Contributions

XJYL, RPL: designed the study, performed data analysis, and revised the paper. YJL, RYW: performed the experiments, analyzed the data, and wrote the paper. RS: contributed new reagents. KYW, MND, YQG, FZ, JZW, QZ, SND, RRL: assisted with the experiments. YHZ, FHL: contributed analytic tools.

Corresponding authors

Correspondence to Run-ping Liu or Xiaojiaoyang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Yj., Wu, Ry., Liu, Rp. et al. Aurantio-obtusin ameliorates obesity by activating PPARα-dependent mitochondrial thermogenesis in brown adipose tissues. Acta Pharmacol Sin 44, 1826–1840 (2023). https://doi.org/10.1038/s41401-023-01089-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41401-023-01089-4

Keywords

Search

Quick links