Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

DNA hypomethylation of inflammation-associated genes in adipose tissue of female mice after multigenerational high fat diet feeding

Abstract

Objective:

Maternal obesity significantly increases the susceptibility of offspring to develop obesity and chronic diseases in adulthood. The offspring of obese mothers are shown to prefer high fat diet (HFD) due to their altered neural circuitry, creating a ‘feed-forward cycle’ across generations. We hypothesized that the ‘feed-forward cycle’ caused by multigenerational HFD feeding would have exacerbated effects in adipose tissue of the offspring.

Methods:

Three generations (F0, F1 and F2) of HFD (60% Kcal fat)-fed and corresponding normal chow (NC)-fed C57BL/6 mice were generated. Body weight (BW) and food intake were monitored weekly. Parametrial adipose tissue (pAT) weight and endocrine parameters were measured in 9-month-old female offspring. Gene expression microarray, quantitative RT-PCR and bisulfite sequencing were performed using pAT.

Results:

BW and pAT weight increased in female mice across generations under continuous HFD stress, with the most severe phenotype found in the F2 generation. Genes involved in inflammatory response showed increased expression across generations in the pAT, accompanied by increased macrophage infiltration. The promoters of Toll-like receptor 1 (Tlr1), Tlr2 and linker for activation of T cells (Lat) were hypomethylated in the HF groups compared with the NC group, with additional hypomethylation on some specific CpG sites in the F2 generation.

Conclusions:

A feed-forward cycle exists in female mice after continuous HFD stress as demonstrated by increased adiposity and progressive inflammation in adipose tissue across generations. DNA hypomethylation over generations lead to epigenetically altered expression of Tlr1, Tlr2 and Lat, which may contribute to the inflammation in adipose tissue. Our study provides a potential mechanism for enhanced inflammation in adipose tissue under multigenerational HFD-fed stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Kelly T, Yang W, Chen CS, Reynolds K, He J . Global burden of obesity in 2005 and projections to 2030. Int J Obes (Lond) 2008; 32: 1431–1437.

    Article  CAS  Google Scholar 

  2. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M . Health and economic burden of the projected obesity trends in the USA and the UK. Lancet 2011; 378: 815–825.

    Article  PubMed  Google Scholar 

  3. Barker DJ . The origins of the developmental origins theory. J Intern Med 2007; 261: 412–417.

    Article  CAS  PubMed  Google Scholar 

  4. Muhlhausler BS, Ong ZY . The fetal origins of obesity: early origins of altered food intake. Endocr Metab Immune Disord Drug Targets 2011; 11: 189–197.

    Article  CAS  PubMed  Google Scholar 

  5. Vucetic Z, Kimmel J, Totoki K, Hollenbeck E, Reyes TM . Maternal high-fat diet alters methylation and gene expression of dopamine and opioid-related genes. Endocrinology 2010; 151: 4756–4764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sullivan EL, Smith MS, Grove KL . Perinatal exposure to high-fat diet programs energy balance, metabolism and behavior in adulthood. Neuroendocrinology 2011; 93: 1–8.

    Article  CAS  PubMed  Google Scholar 

  7. Li J, Huang J, Li JS, Chen H, Huang K, Zheng L . Accumulation of endoplasmic reticulum stress and lipogenesis in the liver through generational effects of high fat diets. J Hepatol 2012; 56: 900–907.

    Article  CAS  PubMed  Google Scholar 

  8. Takasaki M, Honma T, Yanaka M, Sato K, Shinohara N, Ito J et al. Continuous intake of a high-fat diet beyond one generation promotes lipid accumulation in liver and white adipose tissue of female mice. J Nutr Biochem 2011; 23: 640–645.

    Article  PubMed  Google Scholar 

  9. Massiera F, Barbry P, Guesnet P, Joly A, Luquet S, Moreilhon-Brest C et al. A Western-like fat diet is sufficient to induce a gradual enhancement in fat mass over generations. J Lipid Res 2010; 51: 2352–2361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Matsuzawa Y, Shimomura I, Nakamura T, Keno Y, Tokunaga K . Pathophysiology and pathogenesis of visceral fat obesity. Diabetes Res Clin Pract 1994; 24 (Suppl): S111–S116.

    Article  PubMed  Google Scholar 

  11. Hamdy O, Porramatikul S, Al-Ozairi E . Metabolic obesity: the paradox between visceral and subcutaneous fat. Curr Diabetes Rev 2006; 2: 367–373.

    Article  PubMed  Google Scholar 

  12. Chen HC, Farese RV Jr . Determination of adipocyte size by computer image analysis. J Lipid Res 2002; 43: 986–989.

    CAS  PubMed  Google Scholar 

  13. Chen H, Zheng C, Zhang X, Li J, Zheng L, Huang K . Apelin alleviates diabetes-associated endoplasmic reticulum stress in the pancreas of Akita mice. Peptides 2011; 32: 1634–1639.

    Article  CAS  PubMed  Google Scholar 

  14. Kosteli A, Sugaru E, Haemmerle G, Martin JF, Lei J, Zechner R et al. Weight loss and lipolysis promote a dynamic immune response in murine adipose tissue. J Clin Invest 2010; 120: 3466–3479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Peng X, Wood CL, Blalock EM, Chen KC, Landfield PW, Stromberg AJ . Statistical implications of pooling RNA samples for microarray experiments. BMC Bioinformatics 2003; 4: 26.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bruce KD, Cagampang FR, Argenton M, Zhang J, Ethirajan PL, Burdge GC et al. Maternal high-fat feeding primes steatohepatitis in adult mice offspring, involving mitochondrial dysfunction and altered lipogenesis gene expression. Hepatology 2009; 50: 1796–1808.

    Article  CAS  PubMed  Google Scholar 

  17. Cedar H, Bergman Y, Linking DNA . methylation and histone modification: patterns and paradigms. Nat Rev Genet 2009; 10: 295–304.

    Article  CAS  PubMed  Google Scholar 

  18. Huang da W, Sherman BT, Lempicki RA . Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009; 4: 44–57.

    Article  PubMed  Google Scholar 

  19. Wang LL, Chen H, Huang K, Zheng L . Elevated histone acetylations in Muller cell contribute to inflammation: a novel inhibitory effect of minocycline. Glia 2012; 60: 1896–1905.

    Article  PubMed  Google Scholar 

  20. Rozen S, Skaletsky H . Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 2000; 132: 365–386.

    CAS  PubMed  Google Scholar 

  21. Barber RD, Harmer DW, Coleman RA, Clark BJ . GAPDH as a housekeeping gene: analysis of GAPDH mRNA expression in a panel of 72 human tissues. Physiol Genomics 2005; 21: 389–395.

    Article  CAS  PubMed  Google Scholar 

  22. Schmittgen TD, Livak KJ . Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008; 3: 1101–1108.

    Article  CAS  PubMed  Google Scholar 

  23. Li LC, Dahiya R . MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002; 18: 1427–1431.

    Article  CAS  PubMed  Google Scholar 

  24. Murano I, Barbatelli G, Parisani V, Latini C, Muzzonigro G, Castellucci M et al. Dead adipocytes, detected as crown-like structures, are prevalent in visceral fat depots of genetically obese mice. J Lipid Res 2008; 49: 1562–1568.

    Article  CAS  PubMed  Google Scholar 

  25. Gordon S, Hamann J, Lin HH, Stacey M . F4/80 and the related adhesion-GPCRs. Eur J Immunol 2011; 41: 2472–2476.

    Article  CAS  PubMed  Google Scholar 

  26. Balagopalan L, Ashwell BA, Bernot KM, Akpan IO, Quasba N, Barr VA et al. Enhanced T-cell signaling in cells bearing linker for activation of T-cell (LAT) molecules resistant to ubiquitylation. Proc Natl Acad Sci USA 2011; 108: 2885–2890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wardle J, Sanderson S, Guthrie CA, Rapoport L, Plomin R . Parental feeding style and the inter-generational transmission of obesity risk. Obes Res 2002; 10: 453–462.

    Article  PubMed  Google Scholar 

  28. Hong J, Stubbins RE, Smith RR, Harvey AE, Nunez NP . Differential susceptibility to obesity between male, female and ovariectomized female mice. Nutr J 2009; 8: 11.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Stubbins RE, Najjar K, Holcomb VB, Hong J, Nunez NP . Oestrogen alters adipocyte biology and protects female mice from adipocyte inflammation and insulin resistance. Diabetes Obes Metab 2012; 14: 58–66.

    Article  CAS  PubMed  Google Scholar 

  30. Medrikova D, Jilkova ZM, Bardova K, Janovska P, Rossmeisl M, Kopecky J . Sex differences during the course of diet-induced obesity in mice: adipose tissue expandability and glycemic control. Int J Obes (Lond) 2012; 36: 262–272.

    Article  CAS  Google Scholar 

  31. Bayol SA, Simbi BH, Bertrand JA, Stickland NC . Offspring from mothers fed a 'junk food' diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females. J Physiol 2008; 586: 3219–3230.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Khan IY, Taylor PD, Dekou V, Seed PT, Lakasing L, Graham D et al. Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension 2003; 41: 168–175.

    Article  CAS  PubMed  Google Scholar 

  33. Olefsky JM, Glass CK . Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 2010; 72: 219–246.

    Article  CAS  PubMed  Google Scholar 

  34. Franchi L, Eigenbrod T, Munoz-Planillo R, Nunez G . The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009; 10: 241–247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 2011; 17: 179–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuo LH, Tsai PJ, Jiang MJ, Chuang YL, Yu L, Lai KT et al. Toll-like receptor 2 deficiency improves insulin sensitivity and hepatic insulin signalling in the mouse. Diabetologia 2011; 54: 168–179.

    Article  CAS  PubMed  Google Scholar 

  37. Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS . TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006; 116: 3015–3025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Feingold KR, Moser A, Shigenaga JK, Grunfeld C . Inflammation inhibits the expression of phosphoenolpyruvate carboxykinase in liver and adipose tissue. Innate Immun 2011; 18: 231–240.

    Article  PubMed  Google Scholar 

  39. Cinti S . Transdifferentiation properties of adipocytes in the adipose organ. Am J Physiol Endocrinol Metab 2009; 297: E977–E986.

    Article  CAS  PubMed  Google Scholar 

  40. Cinti S . The adipose organ. Prostaglandins Leukot Essent Fatty Acids 2005; 73: 9–15.

    Article  CAS  PubMed  Google Scholar 

  41. Cinti S . The role of brown adipose tissue in human obesity. Nutr Metab Cardiovasc Dis 2006; 16: 569–574.

    Article  PubMed  Google Scholar 

  42. Ozanne SE, Constancia M . Mechanisms of disease: the developmental origins of disease and the role of the epigenotype. Nat Clin Pract Endocrinol Metab 2007; 3: 539–546.

    Article  CAS  PubMed  Google Scholar 

  43. Ng SF, Lin RC, Laybutt DR, Barres R, Owens JA, Morris MJ . Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 2010; 467: 963–966.

    Article  CAS  PubMed  Google Scholar 

  44. Carone BR, Fauquier L, Habib N, Shea JM, Hart CE, Li R et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 2010; 143: 1084–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Cropley JE, Suter CM, Beckman KB, Martin DI . Germ-line epigenetic modification of the murine A vy allele by nutritional supplementation. Proc Natl Acad Sci USA 2006; 103: 17308–17312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anway MD, Cupp AS, Uzumcu M, Skinner MK . Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 2005; 308: 1466–1469.

    Article  CAS  PubMed  Google Scholar 

  47. Sharma S, Kelly TK, Jones PA . Epigenetics in cancer. Carcinogenesis 2010; 31: 27–36.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Bo Yang (College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China) for technical assistance with the heat map and Professor Xin Chen (UCSF, USA) for critical reading the manuscript. This work was supported by the National Basic Research Program of China (2009BC918304 and 2012CB524901), the Natural Science Foundation of China (Nos. 30970607, 81172971, 81222043 and 31271370) and the Program for New Century Excellent Talents in University (NECT10-0623 and NECT11-0170).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K Huang or L Zheng.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on International Journal of Obesity website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, Y., Li, J., Liu, S. et al. DNA hypomethylation of inflammation-associated genes in adipose tissue of female mice after multigenerational high fat diet feeding. Int J Obes 38, 198–204 (2014). https://doi.org/10.1038/ijo.2013.98

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2013.98

Keywords

This article is cited by

Search

Quick links