Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Integrative Biology

Overexpression of gastric leptin precedes adipocyte leptin during high-fat diet and is linked to 5HT-containing enterochromaffin cells

Abstract

Objectives:

In obesity, while hyperleptinemia highly correlates with excess fat mass, the status of gastric leptin remains unknown. Here, we investigated the expression of leptin in stomach biopsies of obese humans and analyzed the temporal changes of gastric leptin expression in response to diet-induced obesity and its impact on 5-hydroxytryptamine (5HT)-producing cells.

Methods:

Enterochromaffin (EC) cells and expression of leptin, PAX4 (critical factor for EC specification), tryptophane hydroxylase-1 (TPH1, the peripheral rate-limiting enzyme for 5HT) and 5HT were examined by immunofluorescence, quantitative real-time PCR, radioimmunoassay, respectively, in stomach and duodenum biopsies from 19 obese and 14 normo-weighed individuals, and in mucosa scrapings from C57Bl6/J diet-induced obese mice, leptin-deficient ob/ob mice and intestine-specific leptin receptor isoform B-deficient mice.

Results:

Gastric mucosa of obese subjects displays an increased expression of leptin (LEP mRNA by fivefold and protein by twofold, P<0.01), TPH1 ((1.75–2.73, 95% confidence interval (CI)) vs (0.38–0.67, 95% CI); P<0.01) and PAX4 ((1.33–2.11, 95%CI) vs (0.62–0.81, 95% CI); P<0.01) as compared with normo-weighed individuals. In diet-induced obese mice, the overexpressions of gastric leptin, antral Pax4, Tph1 and increased EC cell number occurred before the onset of obesity and hyperleptinemia (reflect of adipocyte leptin production). In addition, leptin deficiency was associated with reduced Pax4 mRNA, whereas oral leptin treatment enhanced both Tph1 and Pax4 mRNA. Finally, mice with an intestine-specific deletion of leptin signaling exhibit significant decrease in duodenal mucosa 5HT content.

Conclusions:

These data demonstrate that gastric leptin is upregulated in obese individuals. Results from high-fat diet mice showed that overexpression of gastric leptin that is linked to gut ‘5HT pathway’ occurred before the onset of obesity and expansion of fat mass. This may be relevant in the pathophysiology of obesity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM . Positional cloning of the mouse obese gene and its human homologue. Nature 1994; 372: 425–432.

    Article  CAS  Google Scholar 

  2. Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R et al. Identification and expression cloning of a leptin receptor, OB-R. Cell 1995; 83: 1263–1271.

    Article  CAS  Google Scholar 

  3. Lee GH, Proenca R, Montez JM, Carroll KM, Darvishzadeh JG, Lee JI et al. Abnormal splicing of the leptin receptor in diabetic mice. Nature 1996; 379: 632–635.

    Article  CAS  Google Scholar 

  4. Balthasar N, Coppari R, McMinn J, Liu SM, Lee CE, Tang V et al. Leptin receptor signaling in POMC neurons is required for normal body weight homeostasis. Neuron 2004; 42: 983–991.

    Article  CAS  Google Scholar 

  5. Cohen P, Zhao C, Cai X, Montez JM, Rohani SC, Feinstein P et al. Selective deletion of leptin receptor in neurons leads to obesity. J Clin Invest 2001; 108: 1113–1121.

    Article  CAS  Google Scholar 

  6. Ring LE, Zeltser LM . Disruption of hypothalamic leptin signaling in mice leads to early-onset obesity, but physiological adaptations in mature animals stabilize adiposity levels. J Clin Invest 2010; 120: 2931–2941.

    Article  CAS  Google Scholar 

  7. Bado A, Levasseur S, Attoub S, Kermorgant S, Laigneau JP, Bortoluzzi MN et al. The stomach is a source of leptin. Nature 1998; 394: 790–793.

    Article  CAS  Google Scholar 

  8. Sobhani I, Bado A, Vissuzaine C, Buyse M, Kermorgant S, Laigneau JP et al. Leptin secretion and leptin receptor in the human stomach. Gut 2000; 47: 178–183.

    Article  CAS  Google Scholar 

  9. Pico C, Oliver P, Sanchez J, Palou A . Gastric leptin: a putative role in the short-term regulation of food intake. Br J Nutr 2003; 90: 735–741.

    Article  CAS  Google Scholar 

  10. Sobhani I, Buyse M, Goiot H, Weber N, Laigneau JP, Henin D et al. Vagal stimulation rapidly increases leptin secretion in human stomach. Gastroenterology 2002; 122: 259–263.

    Article  CAS  Google Scholar 

  11. Yuan CS, Attele AS, Dey L, Xie JT . Gastric effects of cholecystokinin and its interaction with leptin on brainstem neuronal activity in neonatal rats. J Pharmacol Exp Ther 2000; 295: 177–182.

    CAS  PubMed  Google Scholar 

  12. Stan S, Levy E, Bendayan M, Zoltowska M, Lambert M, Michaud J et al. Effect of human recombinant leptin on lipid handling by fully differentiated Caco-2 cells. FEBS Lett 2001; 508: 80–84.

    Article  CAS  Google Scholar 

  13. Cammisotto PG, Bendayan M, Levy E . Regulation of leptin receptor expression in human polarized Caco-2/15 cells. Endocr Metab Immune Disord Drug Targets 2012; 12: 57–70.

    Article  CAS  Google Scholar 

  14. Buyse M, Bado A, Dauge V . Leptin decreases feeding and exploratory behaviour via interactions with CCK(1) receptors in the rat. Neuropharmacology 2001; 40: 818–825.

    Article  CAS  Google Scholar 

  15. Cummings DE, Overduin J . Gastrointestinal regulation of food intake. J Clin Invest 2007; 117: 13–23.

    Article  CAS  Google Scholar 

  16. Drucker DJ . The role of gut hormones in glucose homeostasis. J Clin Invest 2007; 117: 24–32.

    Article  CAS  Google Scholar 

  17. Guilmeau S, Buyse M, Bado A . Gastric leptin: a new manager of gastrointestinal function. Curr Opin Pharmacol 2004; 4: 561–566.

    Article  CAS  Google Scholar 

  18. Guilmeau S, Buyse M, Tsocas A, Laigneau JP, Bado A . Duodenal leptin stimulates cholecystokinin secretion: evidence of a positive leptin-cholecystokinin feedback loop. Diabetes 2003; 52: 1664–1672.

    Article  CAS  Google Scholar 

  19. Anini Y, Brubaker PL . Role of leptin in the regulation of glucagon-like peptide-1 secretion. Diabetes 2003; 52: 252–259.

    Article  CAS  Google Scholar 

  20. Ahima RS, Flier JS . Leptin. Annu Rev Physiol 2000; 62: 413–437.

    Article  CAS  Google Scholar 

  21. Friedman JM, Halaas JL . Leptin and the regulation of body weight in mammals. Nature 1998; 395: 763–770.

    Article  CAS  Google Scholar 

  22. Calapai G, Corica F, Corsonello A, Sautebin L, Di Rosa M, Campo GM et al. Leptin increases serotonin turnover by inhibition of brain nitric oxide synthesis. J Clin Invest 1999; 104: 975–982.

    Article  CAS  Google Scholar 

  23. Harris RB, Zhou J, Redmann SM Jr, Smagin GN, Smith SR, Rodgers E et al. A leptin dose-response study in obese (ob/ob) and lean (+/?) mice. Endocrinology 1998; 139: 8–19.

    Article  CAS  Google Scholar 

  24. Yadav VK, Oury F, Tanaka KF, Thomas T, Wang Y, Cremers S et al. Leptin-dependent serotonin control of appetite: temporal specificity, transcriptional regulation, and therapeutic implications. J Exp Med 2011; 208: 41–52.

    Article  CAS  Google Scholar 

  25. Karsenty G, Yadav VK . Regulation of bone mass by serotonin: molecular biology and therapeutic implications. Annu Rev Med 2011; 62: 323–331.

    Article  CAS  Google Scholar 

  26. Lam DD, Leinninger GM, Louis GW, Garfield AS, Marston OJ, Leshan RL et al. Leptin does not directly affect CNS serotonin neurons to influence appetite. Cell Metab 2011; 13: 584–591.

    Article  CAS  Google Scholar 

  27. Srinivasan S, Sadegh L, Elle IC, Christensen AG, Faergeman NJ, Ashrafi K . Serotonin regulates C. elegans fat and feeding through independent molecular mechanisms. Cell Metab 2008; 7: 533–544.

    Article  CAS  Google Scholar 

  28. Sumara G, Sumara O, Kim JK, Karsenty G . Gut-derived serotonin is a multifunctional determinant to fasting adaptation. Cell Metab 2012; 16: 588–600.

    Article  CAS  Google Scholar 

  29. Berger M, Gray JA, Roth BL . The expanded biology of serotonin. Annu Rev Med 2009; 60: 355–366.

    Article  CAS  Google Scholar 

  30. Beucher A, Gjernes E, Collin C, Courtney M, Meunier A, Collombat P et al. The homeodomain-containing transcription factors Arx and Pax4 control enteroendocrine subtype specification in mice. PLoS One 2012; 7: e36449.

    Article  CAS  Google Scholar 

  31. Begriche K, Letteron P, Abbey-Toby A, Vadrot N, Robin MA, Bado A et al. Partial leptin deficiency favors diet-induced obesity and related metabolic disorders in mice. Am J Physiol Endocrinol Metab 2008; 294: E939–E951.

    Article  CAS  Google Scholar 

  32. Sakar Y, Nazaret C, Letteron P, Ait Omar A, Avenati M, Viollet B et al. Positive regulatory control loop between gut leptin and intestinal GLUT2/GLUT5 transporters links to hepatic metabolic functions in rodents. PLoS One 2009; 4: e7935.

    Article  Google Scholar 

  33. Hindlet P, Bado A, Kamenicky P, Delomenie C, Bourasset F, Nazaret C et al. Reduced intestinal absorption of dipeptides via PepT1 in mice with diet-induced obesity is associated with leptin receptor down-regulation. J Biol Chem 2009; 284: 6801–6808.

    Article  CAS  Google Scholar 

  34. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334: 292–295.

    Article  CAS  Google Scholar 

  35. Chua SC Jr, White DW, Wu-Peng XS, Liu SM, Okada N, Kershaw EE et al. Phenotype of fatty due to Gln269Pro mutation in the leptin receptor (Lepr). Diabetes 1996; 45: 1141–1143.

    Article  CAS  Google Scholar 

  36. Yamashita T, Murakami T, Iida M, Kuwajima M, Shima K . Leptin receptor of Zucker fatty rat performs reduced signal transduction. Diabetes 1997; 46: 1077–1080.

    Article  CAS  Google Scholar 

  37. Sanchez J, Oliver P, Palou A, Pico C . The inhibition of gastric ghrelin production by food intake in rats is dependent on the type of macronutrient. Endocrinology 2004; 145: 5049–5055.

    Article  CAS  Google Scholar 

  38. Wang YH, Tache Y, Sheibel AB, Go VL, Wei JY . Two types of leptin-responsive gastric vagal afferent terminals: an in vitro single-unit study in rats. Am J Physiol 1997; 273: R833–R837.

    CAS  PubMed  Google Scholar 

  39. Barrachina MD, Martinez V, Wang L, Wei JY, Tache Y . Synergistic interaction between leptin and cholecystokinin to reduce short-term food intake in lean mice. Proc Natl Acad Sci USA 1997; 94: 10455–10460.

    Article  CAS  Google Scholar 

  40. de Lartigue G, Barbier de la Serre C, Espero E, Lee J, Raybould HE . Leptin resistance in vagal afferent neurons inhibits cholecystokinin signaling and satiation in diet induced obese rats. PLoS One 2012; 7: e32967.

    Article  CAS  Google Scholar 

  41. Bertrand RL, Senadheera S, Markus I, Liu L, Howitt L, Chen H et al. A Western diet increases serotonin availability in rat small intestine. Endocrinology 2011; 152: 36–47.

    Article  CAS  Google Scholar 

  42. Gershon MD . 5-Hydroxytryptamine (serotonin) in the gastrointestinal tract. Curr Opin Endocrinol Diabetes Obes 2013; 20: 14–21.

    Article  CAS  Google Scholar 

  43. Mathews TA, Fedele DE, Coppelli FM, Avila AM, Murphy DL, Andrews AM . Gene dose-dependent alterations in extraneuronal serotonin but not dopamine in mice with reduced serotonin transporter expression. J Neurosci Methods 2004; 140: 169–181.

    Article  CAS  Google Scholar 

  44. Chen X, Margolis KJ, Gershon MD, Schwartz GJ, Sze JY . Reduced serotonin reuptake transporter (SERT) function causes insulin resistance and hepatic steatosis independent of food intake. PLoS One 2012; 7: e32511.

    Article  CAS  Google Scholar 

  45. Pinto HC, Portela-Gomes GM, Grimelius L, Kohnert KD, de Sousa JC, Albuquerque MA . The distribution of endocrine cell types of the gastrointestinal mucosa in genetically diabetic (db/db) mice. Gastroenterology 1995; 108: 967–974.

    Article  CAS  Google Scholar 

  46. Udagawa J, Hashimoto R, Suzuki H, Hatta T, Sotomaru Y, Hioki K et al. The role of leptin in the development of the cerebral cortex in mouse embryos. Endocrinology 2006; 147: 647–658.

    Article  CAS  Google Scholar 

  47. Bischoff SC, Mailer R, Pabst O, Weier G, Sedlik W, Li Z et al. Role of serotonin in intestinal inflammation: knockout of serotonin reuptake transporter exacerbates 2,4,6-trinitrobenzene sulfonic acid colitis in mice. Am J Physiol Gastrointest Liver Physiol 2009; 296: G685–G695.

    Article  CAS  Google Scholar 

  48. Ghia JE, Li N, Wang H, Collins M, Deng Y, El-Sharkawy RT et al. Serotonin has a key role in pathogenesis of experimental colitis. Gastroenterology 2009; 137: 1649–1660.

    Article  CAS  Google Scholar 

  49. Margolis KG, Stevanovic K, Li Z, Yang QM, Oravecz T, Zambrowicz B et al. Pharmacological reduction of mucosal but not neuronal serotonin opposes inflammation in mouse intestine. Gut 2013; e-pub ahead of print 7 June 2013; doi:10.1136/gutjnl-2013-304901.

    Article  Google Scholar 

  50. Ding S, Lund PK . Role of intestinal inflammation as an early event in obesity and insulin resistance. Curr Opin Clin Nutr Metab Care 2011; 14: 328–333.

    Article  CAS  Google Scholar 

  51. Ding S, Chi MM, Scull BP, Rigby R, Schwerbrock NM, Magness S et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 2010; 5: e12191.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by INSERM, AP-HP, Grants from French National Society of Gastroenterology (FARE- SFNGE) and ANR-ALIA R10004HH to AB.

Author Contributions

JLB, MLG and AB conceived and design the study. ALP, JPM, TA, KA and AC recruited subjects and provided biopsies. MH and FC performed experiments. JPM, RD, AC, FJ and MLG critically reviewed the manuscript. JLB and AB interpreted the data and wrote the paper.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J Le Beyec or A Bado.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Beyec, J., Pelletier, AL., Arapis, K. et al. Overexpression of gastric leptin precedes adipocyte leptin during high-fat diet and is linked to 5HT-containing enterochromaffin cells. Int J Obes 38, 1357–1364 (2014). https://doi.org/10.1038/ijo.2014.14

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ijo.2014.14

Keywords

This article is cited by

Search

Quick links