Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The SMA Trust: the role of a disease-focused research charity in developing treatments for SMA

Abstract

SMA is a rare hereditary neuromuscular disease that causes weakness and muscle wasting as a result of the loss of spinal motor neurons. In its most severe form, SMA is the commonest genetic cause of death in infants, and children with less severe forms of SMA face the prospect of lifelong disability from progressive muscle wasting, loss of mobility and limb weakness. The initial discovery of the defective gene has been followed by major advances in our understanding of the genetic, cellular and molecular basis of SMA, providing the foundation for a range of approaches to treatment, including gene therapy, antisense oligonucleotide treatments and more traditional drug-based approaches to slow or halt disease progression. The approval by the US Food and Drug Administration (FDA) of Spinraza (nusinersen), the first targeted treatment for spinal muscular atrophy (SMA), is a historic moment. Disease-focused research charities, such as The SMA Trust (UK), continue to have a crucial role in promoting the development of additional treatments for SMA, both by funding translational research and by promoting links between researchers, people living with SMA and other stakeholders, including pharmaceutical companies and healthcare providers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Lefebvre S, Bürglen L, Reboullet S, Clermont O, Burlet P, Viollet L et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995; 80: 155–165.

    Article  CAS  Google Scholar 

  2. Burghes AH, Beattie CE . Spinal muscular atrophy: why do low levels of survival motor neuron protein make motor neurons sick? Nat Rev Neurosci 2009; 10: 597–609.

    Article  CAS  PubMed Central  Google Scholar 

  3. Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 1999; 8: 1177–1183.

    Article  CAS  Google Scholar 

  4. Feldkotter M, Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B . Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 2002; 70: 358–368.

    Article  CAS  Google Scholar 

  5. Riessland M, Kaczmarek A, Schneider S, Swoboda KJ, Löhr H, Bradler C et al. Neurocalcin delta suppression protects against spinal muscular atrophy in humans and across species by restoring impaired endocytosis. Am J Hum Genet 2017; 100: 297–315.

    Article  CAS  PubMed Central  Google Scholar 

  6. Shababi M, Glascock J, Lorson CL . Combination of SMN trans-splicing and a neurotrophic factor increases the life span and body mass in a severe model of spinal muscular atrophy. Hum Gene Ther 2011; 22: 135–144.

    Article  CAS  Google Scholar 

  7. Hosseinibarkooie S, Peters M, Torres-Benito L, Rastetter RH, Hupperich K, Hoffmann A et al. The power of human protective modifiers: PLS3 and CORO1C unravel impaired endocytosis in spinal muscular atrophy and rescue SMA phenotype. Am J Hum Genet 2016; 99: 647–665.

    Article  CAS  PubMed Central  Google Scholar 

  8. Hammond SM, Hazell G, Shabanpoor F, Saleh AF, Bowerman M, Sleigh JN et al. Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci USA 2016; 113: 10962–10967.

    Article  CAS  Google Scholar 

  9. Dominguez E, Marais T, Chatauret N, Benkhelifa-Ziyyat S, Duque S, Ravassard P et al. Intravenous scAAV9 delivery of a codon-optimized SMN1 sequence rescues SMA mice. Hum Mol Genet 2011; 20: 681–693.

    Article  CAS  Google Scholar 

  10. Benkhelifa-Ziyyat S, Besse A, Roda M, Duque S, Astord S, Carcenac R et al. Intramuscular scAAV9-SMN injection mediates widespread gene delivery to the spinal cord and decreases disease severity in SMA mice. Mol Ther 2013; 21: 282–290.

    Article  CAS  PubMed Central  Google Scholar 

  11. Tanguy Y, Biferi MG, Besse A, Astord S, Cohen-Tannoudji M, Marais T et al. Systemic AAVrh10 provides higher transgene expression than AAV9 in the brain and the spinal cord of neonatal mice. Front Mol Neurosci 2015; 8: 36.

    Article  PubMed Central  Google Scholar 

  12. Bucher T, Dubreil L, Colle MA, Maquigneau M, Deniaud J, Ledevin M et al. Intracisternal delivery of AAV9 results in oligodendrocyte and motor neuron transduction in the whole central nervous system of cats. Gene Ther 2014; 21: 522–528.

    Article  CAS  PubMed Central  Google Scholar 

  13. Duque SI, Arnold WD, Odermatt P, Li X, Porensky PN, Schmelzer L et al. A large animal model of spinal muscular atrophy and correction of phenotype. Ann Neurol 2015; 77: 399–414.

    Article  CAS  PubMed Central  Google Scholar 

  14. Valori CF, Ning K, Wyles M, Mead RJ, Grierson AJ, Shaw PJ et al. Systemic delivery of scAAV9 expressing SMN prolongs survival in a model of spinal muscular atrophy. Sci Transl Med 2010; 2: 35ra42.

    Article  Google Scholar 

  15. Lutz CM, Kariya S, Patruni S, Osborne MA, Liu D, Henderson CE et al. Postsymptomatic restoration of SMN rescues the disease phenotype in a mouse model of severe spinal muscular atrophy. J Clin Invest 2011; 121: 3029–3041.

    Article  CAS  PubMed Central  Google Scholar 

  16. Kariya S, Obis T, Garone C, Akay T, Sera F, Iwata S et al. Requirement of enhanced survival motoneuron protein imposed during neuromuscular junction maturation. J Clin Invest 2014; 124: 785–800.

    Article  CAS  PubMed Central  Google Scholar 

  17. Ning K, Drepper C, Valori CF, Ahsan M, Wyles M, Higginbottom A et al. PTEN depletion rescues axonal growth defect and improves survival in SMN-deficient motor neurons. Hum Mol Genet 2010; 19: 3159–3168.

    Article  CAS  Google Scholar 

  18. Powis RA, Karyka E, Boyd P, Côme J, Jones RA, Zheng Y et al. Systemic restoration of UBA1 ameliorates disease in spinal muscular atrophy. JCI Insight 2016; 1: 1–16.

    Article  Google Scholar 

  19. Wishart TM, Mutsaers CA, Riessland M, Reimer MM, Hunter G, Hannam ML et al. Dysregulation of ubiquitin homeostasis and beta-catenin signaling promote spinal muscular atrophy. J Clin Invest 2014; 124: 1821–1834.

    Article  CAS  PubMed Central  Google Scholar 

  20. Sleigh JN, Gillingwater TH, Talbot K . The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. Dis Model Mech 2011; 4: 457–467.

    Article  CAS  PubMed Central  Google Scholar 

  21. Hamilton G, Gillingwater TH . Spinal muscular atrophy: going beyond the motor neuron. Trends Mol Med 2013; 19: 40–50.

    Article  CAS  Google Scholar 

  22. Wirth B, Barkats M, Martinat C, Sendtner M, Gillingwater TH . Moving towards treatments for spinal muscular atrophy: hopes and limits. Expert Opin Emerg Drugs 2015; 20: 353–356.

    Article  CAS  Google Scholar 

  23. Thomson AK, Somers E, Powis RA, Shorrock HK, Murphy K, Swoboda KJ et al. Survival of motor neurone protein is required for normal postnatal development of the spleen. J Anat 2017; 230: 337–346.

    Article  CAS  Google Scholar 

  24. Szunyogova E, Zhou H, Maxwell GK, Powis RA, Francesco M, Gillingwater TH et al. Survival Motor Neuron (SMN) protein is required for normal mouse liver development. Sci Rep 2016; 6: 34635.

    Article  CAS  PubMed Central  Google Scholar 

  25. Sintusek P, Catapano F, Angkathunkayul N, Marrosu E, Parson SH, Morgan JE et al. Histopathological defects in intestine in severe spinal muscular atrophy mice are improved by systemic antisense oligonucleotide treatment. PLoS ONE 2016; 11: e0155032.

    Article  PubMed Central  Google Scholar 

  26. Somers E, Lees RD, Hoban K, Sleigh JN, Zhou H, Muntoni F et al. Vascular defects and spinal cord hypoxia in spinal muscular atrophy. Ann Neurol 2016; 79: 217–230.

    Article  CAS  Google Scholar 

  27. Sleigh JN, Barreiro-Iglesias A, Oliver PL, Biba A, Becker T, Davies KE et al. Chondrolectin affects cell survival and neuronal outgrowth in in vitro and in vivo models of spinal muscular atrophy. Hum Mol Genet 2014; 23: 855–869.

    Article  CAS  Google Scholar 

  28. Little D, Valori CF, Mutsaers CA, Bennett EJ, Wyles M, Sharrack B et al. PTEN depletion decreases disease severity and modestly prolongs survival in a mouse model of spinal muscular atrophy. Mol Ther 2015; 23: 270–277.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Lynn Ossher for reviewing this paper as well as all our supporters for all their donations which make our work possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V Christie-Brown.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christie-Brown, V., Mitchell, J. & Talbot, K. The SMA Trust: the role of a disease-focused research charity in developing treatments for SMA. Gene Ther 24, 544–546 (2017). https://doi.org/10.1038/gt.2017.47

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2017.47

Search

Quick links