Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inducible scAAV2.GRE.MMP1 lowers IOP long-term in a large animal model for steroid-induced glaucoma gene therapy

Abstract

Current treatment of glaucoma relies on administration of daily drops or eye surgery. A gene therapy approach to treat steroid-induced glaucoma would bring a resolution to millions of people worldwide who depend on glucocorticoid therapy for a myriad of inflammatory disorders. Previously, we had characterized a short-term Adh.GRE.MMP1 gene vector for the production of steroid-induced MMP1 in the trabecular meshwork and tested reduction of elevated intraocular pressure (IOP) in a sheep model. Here we conducted a trial transferring the same transgene cassette to a clinically safe vector (scAAV2), and extended the therapeutic outcome to longer periods of times. No evidence of ocular and/or systemic toxicity was observed. Viral genome distributions showed potential reinducible vector DNAs in the trabecular meshwork (0.4 v.g. per cell) and negligible copies in six major internal organs (0.00002–0.005 v.g. per cell). Histological sections confirmed successful transduction of scAAV2.GFP to the trabecular meshwork. Optimization of the sheep steroid-induced hypertensive model revealed that topical ophthalmic drug difluprednate 0.05% (durezol) induced the highest IOP elevation in the shortest time. This is the first efficacy/toxicity study of a feasible gene therapy treatment of steroid-induced hypertension using clinically accepted self-complementary adeno-associated vectors (scAAV) vectors in a large animal model.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Kiernan DF, Mieler WF . Intraocular corticosteroids for posterior segment disease: 2012 update. Expert Opin Pharmacother 2012; 13: 1679–1694.

    Article  CAS  PubMed  Google Scholar 

  2. Kiddee W, Trope GE, Sheng L, Beltran-Agullo L, Smith M, Strungaru MH et al. Intraocular pressure monitoring post intravitreal steroids: a systematic review. Surv Ophthalmol 2013; 58: 291–310.

    Article  PubMed  Google Scholar 

  3. Bollinger K, Kim J, Lowder CY, Kaiser PK, Smith SD . Intraocular pressure outcome of patients with fluocinolone acetonide intravitreal implant for noninfectious uveitis. Ophthalmology 2011; 118: 1927–1931.

    Article  PubMed  Google Scholar 

  4. Armaly MF, Becker B . Intraocular pressure response to topical corticosteroids. Fed Proc 1965; 24: 1274–1278.

    CAS  PubMed  Google Scholar 

  5. Becker B . Intraocular pressure response to topical corticosteroids. Invest Ophthalmol 1965; 4: 198–205.

    CAS  PubMed  Google Scholar 

  6. Bollinger KE, Smith SD . Prevalence and management of elevated intraocular pressure after placement of an intravitreal sustained-release steroid implant. Curr Opin Ophthalmol 2009; 20: 99–103.

    Article  PubMed  Google Scholar 

  7. Tripathi RC, Parapuram SK, Tripathi BJ, Zhong Y, Chalam KV . Corticosteroids and glaucoma risk. Drugs Aging 1999; 15: 439–450.

    Article  CAS  PubMed  Google Scholar 

  8. Becker B, HAHN KA . Topical corticosteroids and hereditary in primary open-angle glaucoma. Am J Ophthalmol 1964; 57: 543–551.

    Article  CAS  PubMed  Google Scholar 

  9. Kitazawa Y, Horie T . The prognosis of corticosteroid-responsive individuals. Arch Ophthalmol 1981; 99: 819–823.

    Article  CAS  PubMed  Google Scholar 

  10. Armaly MF . Effect of corticosteroids on intraocular pressure and fluid dynamics. I. The effect of Dexamethasone in the normal eye. Arch Ophthalmol 1963; 70: 482–491.

    Article  CAS  PubMed  Google Scholar 

  11. Quigley HA, Broman AT . The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol 2006; 90: 262–267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY . Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology 2014; 121: 2081–2090.

    Article  PubMed  Google Scholar 

  13. Kass MA, Heuer DK, Higginbotham EJ, Johnson CA, Keltner JL, Miller JP et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol 2002; 120: 701–713.

    Article  PubMed  Google Scholar 

  14. Caprioli J, Varma R . Intraocular pressure: modulation as treatment for glaucoma. Am J Ophthalmol 2011; 152: 340–344.

    Article  PubMed  Google Scholar 

  15. Downs JC, Roberts MD, Burgoyne CF . Mechanical environment of the optic nerve head in glaucoma. Optom Vis Sci 2008; 85: 425–435.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Cone-Kimball E, Nguyen C, Oglesby EN, Pease ME, Steinhart MR, Quigley HA . Scleral structural alterations associated with chronic experimental intraocular pressure elevation in mice. Mol Vis 2013; 19: 2023–2039.

    PubMed  PubMed Central  Google Scholar 

  17. Lütjen-Drecoll E, Shimizu T, Rohrbach M, Rohen JW . Quantitative analysis of 'plaque material' in the inner- and outer wall of Schlemm's canal in normal- and glaucomatous eyes. Exp Eye Res 1986; 42: 443–455.

    Article  PubMed  Google Scholar 

  18. Vranka JA, Kelley MJ, Acott TS, Keller KE . Extracellular matrix in the trabecular meshwork: intraocular pressure regulation and dysregulation in glaucoma. Exp Eye Res 2015; 133: 112–125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang X, Ognibene CM, Clark AF, Yorio T . Dexamethasone inhibition of trabecular meshwork cell phagocytosis and its modulation by glucocorticoid receptor beta. Exp Eye Res 2007; 84: 275–284.

    Article  CAS  PubMed  Google Scholar 

  20. Johnson D, Gottanka J, Flugel C, Hoffmann F, Futa R, Lutjen-Drecoll E . Ultrastructural changes in the trabecular meshwork of human eyes treated with corticosteroids. Arch Ophthalmol 1997; 115: 375–383.

    Article  CAS  PubMed  Google Scholar 

  21. Tektas OY, Hammer CM, Danias J, Candia O, Gerometta R, Podos SM et al. Morphologic changes in the outflow pathways of bovine eyes treated with corticosteroids. Invest Ophthalmol Vis Sci 2010; 51: 4060–4066.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Tektas OY, Lütjen-Drecoll E . Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp Eye Res 2009; 88: 769–775.

    Article  CAS  PubMed  Google Scholar 

  23. Comes N, Buie LK, Borrás T . Evidence for a role of angiopoietin-like 7 (ANGPTL7) in extracellular matrix formation of the human trabecular meshwork: implications for glaucoma. Genes Cells 2011; 16: 243–259.

    Article  CAS  PubMed  Google Scholar 

  24. Rozsa FW, Reed DM, Scott KM, Pawar H, Moroi SE, Kijek TG et al. Gene expression profile of human trabecular meshwork cells in response to long-term dexamethasone exposure. Mol Vis 2006; 12: 125–141.

    CAS  PubMed  Google Scholar 

  25. Bradley JM, Vranka J, Colvis CM, Conger DM, Alexander JP, Fisk AS et al. Effect of matrix metalloproteinases activity on outflow in perfused human organ culture. Invest Ophthalmol Vis Sci 1998; 39: 2649–2658.

    CAS  PubMed  Google Scholar 

  26. Gaton DD, Sagara T, Lindsey JD, Gabelt BT, Kaufman PL, Weinreb RN . Increased matrix metalloproteinases 1, 2, and 3 in the monkey uveoscleral outflow pathway after topical prostaglandin F(2 alpha)-isopropyl ester treatment. Arch Ophthalmol 2001; 119: 1165–1170.

    Article  CAS  PubMed  Google Scholar 

  27. Hinz B, Rosch S, Ramer R, Tamm ER, Brune K . Latanoprost induces matrix metalloproteinase-1 expression in human nonpigmented ciliary epithelial cells through a cyclooxygenase-2-dependent mechanism. FASEB J 2005; 19: 1929–1931.

    Article  CAS  PubMed  Google Scholar 

  28. Oh DJ, Martin JL, Williams AJ, Russell P, Birk DE, Rhee DJ . Effect of latanoprost on the expression of matrix metalloproteinases and their tissue inhibitors in human trabecular meshwork cells. Invest Ophthalmol Vis Sci 2006; 47: 3887–3895.

    Article  PubMed  Google Scholar 

  29. Spiga MG, Borrás T . Development of a gene therapy virus with a glucocorticoid-inducible MMP1 for the treatment of steroid glaucoma. Invest Ophthalmol Vis Sci 2010; 51: 3029–3041.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Gerometta R, Spiga MG, Borrás T, Candia OA . Treatment of sheep steroid-induced ocular hypertension with a glucocorticoid-inducible MMP1 gene therapy virus. Invest Ophthalmol Vis Sci 2010; 51: 3042–3048.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Borrás T, Matsumoto Y, Epstein DL, Johnson DH . Gene transfer to the human trabecular meshwork by anterior segment perfusion. Invest Ophthalmol Vis Sci 1998; 39: 1503–1507.

    PubMed  Google Scholar 

  32. Borrás T, Tamm ER, Zigler JS Jr . Ocular adenovirus gene transfer varies in efficiency and inflammatory response. Invest Ophthalmol Vis Sci 1996; 37: 1282–1293.

    PubMed  Google Scholar 

  33. Budenz DL, Bennett J, Alonso L, Maguire A . In vivo gene transfer into murine corneal endothelial and trabecular meshwork cells. Invest Ophthalmol Vis Sci 1995; 36: 2211–2215.

    CAS  PubMed  Google Scholar 

  34. Borrás T, Gabelt BT, Klintworth GK, Peterson JC, Kaufman PL . Non-invasive observation of repeated adenoviral GFP gene delivery to the anterior segment of the monkey eye in vivo. J Gene Med 2001; 3: 437–449.

    Article  PubMed  Google Scholar 

  35. Acland GM, Aguirre GD, Ray J, Zhang Q, Aleman TS, Cideciyan AV et al. Gene therapy restores vision in a canine model of childhood blindness. Nat Genet 2001; 28: 92–95.

    CAS  PubMed  Google Scholar 

  36. Pierce EA, Bennett J . The Status of RPE65 Gene Therapy Trials: Safety and Efficacy. Cold Spring Harb Perspect Med 2015; 5: a017285.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Borrás T, Xue W, Choi VW, Bartlett JS, Li G, Samulski RJ et al. Mechanisms of AAV transduction in glaucoma-associated human trabecular meshwork cells. J Gene Med 2006; 8: 589–602.

    Article  PubMed  Google Scholar 

  38. Buie LK, Rasmussen CA, Porterfield EC, Ramgolam VS, Choi VW, Markovic-Plese S et al. Self-complementary AAV virus (scAAV) safe and long-term gene transfer in the trabecular meshwork of living rats and monkeys. Invest Ophthalmol Vis Sci 2010; 51: 236–248.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Overby DR, Clark AF . Animal models of glucocorticoid-induced glaucoma. Exp Eye Res 2015; 141: 15–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sawaguchi K, Nakamura Y, Nakamura Y, Sakai H, Sawaguchi S . Myocilin gene expression in the trabecular meshwork of rats in a steroid-induced ocular hypertension model. Ophthalmic Res 2005; 37: 235–242.

    Article  CAS  PubMed  Google Scholar 

  41. Zode GS, Sharma AB, Lin X, Searby CC, Bugge K, Kim GH et al. Ocular-specific ER stress reduction rescues glaucoma in murine glucocorticoid-induced glaucoma. J Clin Invest 2014; 124: 1956–1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Whitlock NA, McKnight B, Corcoran KN, Rodriguez LA, Rice DS . Increased intraocular pressure in mice treated with dexamethasone. Invest Ophthalmol Vis Sci 2010; 51: 6496–6503.

    Article  PubMed  Google Scholar 

  43. Fingert JH, Alward WL, Wang K, Yorio T, Clark AF . Assessment of SNPs associated with the human glucocorticoid receptor in primary open-angle glaucoma and steroid responders. Mol Vis 2010; 16: 596–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Gerometta R, Podos SM, Danias J, Candia OA . Steroid-induced ocular hypertension in normal sheep. Invest Ophthalmol Vis Sci 2009; 50: 669–673.

    Article  PubMed  Google Scholar 

  45. Arcot SS, Flemington EK, Deininger PL . The human thymidine kinase gene promoter. Deletion analysis and specific protein binding. J Biol Chem 1989; 264: 2343–2349.

    CAS  PubMed  Google Scholar 

  46. Eggermont J, Proudfoot NJ . Poly(A) signals and transcriptional pause sites combine to prevent interference between RNA polymerase II promoters. EMBO J 1993; 12: 2539–2548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. McCarty DM, Fu H, Monahan PE, Toulson CE, Naik P, Samulski RJ . Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo. Gene Ther 2003; 10: 2112–2118.

    Article  CAS  PubMed  Google Scholar 

  48. Kersey JP, Broadway DC . Corticosteroid-induced glaucoma: a review of the literature. Eye (Lond) 2006; 20: 407–416.

    Article  CAS  Google Scholar 

  49. Jain S, Thompson JR, Foot B, Tatham A, Eke T . Severe intraocular pressure rise following intravitreal triamcinolone: a national survey to estimate incidence and describe case profiles. Eye (Lond) 2014; 28: 399–401.

    Article  CAS  Google Scholar 

  50. Vasconcelos-Santos DV, Nehemy PG, Schachat AP, Nehemy MB . Secondary ocular hypertension after intravitreal injection of 4 mg of triamcinolone acetonide: incidence and risk factors. Retina 2008; 28: 573–580.

    Article  PubMed  Google Scholar 

  51. Jones R III, Rhee DJ . Corticosteroid-induced ocular hypertension and glaucoma: a brief review and update of the literature. Curr Opin Ophthalmol 2006; 17: 163–167.

    PubMed  Google Scholar 

  52. Zhan GL, Miranda OC, Bito LZ . Steroid glaucoma: corticosteroid-induced ocular hypertension in cats. Exp Eye Res 1992; 54: 211–218.

    Article  CAS  PubMed  Google Scholar 

  53. Gelatt KN, Mackay EO . The ocular hypertensive effects of topical 0.1% dexamethasone in beagles with inherited glaucoma. J Ocul Pharmacol Ther 1998; 14: 57–66.

    Article  CAS  PubMed  Google Scholar 

  54. Gerometta R, Podos SM, Candia OA, Wu B, Malgor LA, Mittag T et al. Steroid-induced ocular hypertension in normal cattle. Arch Ophthalmol 2004; 122: 1492–1497.

    Article  CAS  PubMed  Google Scholar 

  55. Overby DR, Bertrand J, Tektas OY, Boussommier-Calleja A, Schicht M, Ethier CR et al. Ultrastructural changes associated with dexamethasone-induced ocular hypertension in mice. Invest Ophthalmol Vis Sci 2014; 55: 4922–4933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Birnbaum AD, Jiang Y, Tessler HH, Goldstein DA . Elevation of intraocular pressure in patients with uveitis treated with topical difluprednate. Arch Ophthalmol 2011; 129: 667–668.

    PubMed  Google Scholar 

  57. Aref AA, Scott IU, Oden NL, Ip MS, Blodi BA, VanVeldhuisen PC . Incidence, risk factors, and timing of elevated intraocular pressure after intravitreal triamcinolone acetonide injection for macular edema secondary to retinal vein occlusion: SCORE Study Report 15. JAMA Ophthalmol 2015; 133: 1022–1029.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Bert B, Harizman N . Sympathising intraocular pressure response to contralateral steroid drop usage. Invest Ophthalmol Vis Sci 2012; 53: Abstract #5040.

    Google Scholar 

  59. Flugel C, Tamm E, Lutjen-Drecoll E . Different cell populations in bovine trabecular meshwork: an ultrastructural and immunocytochemical study. Exp Eye Res 1991; 52: 681–690.

    Article  CAS  PubMed  Google Scholar 

  60. Mao W, Tovar-Vidales T, Yorio T, Wordinger RJ, Clark AF . Perfusion-cultured bovine anterior segments as an ex vivo model for studying glucocorticoid-induced ocular hypertension and glaucoma. Invest Ophthalmol Vis Sci 2011; 52: 8068–8075.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jacobson SG, Acland GM, Aguirre GD, Aleman TS, Schwartz SB, Cideciyan AV et al. Safety of recombinant adeno-associated virus type 2-RPE65 vector delivered by ocular subretinal injection. Mol Ther 2006; 13: 1074–1084.

    Article  CAS  PubMed  Google Scholar 

  62. Xiao X, Li J, Samulski RJ . Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 1998; 72: 2224–2232.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by National Institutes of Health Grants EY11906 (TB) and by an unrestricted grant from the Research to Prevent Blindness to the Department of Ophthalmology at the University of North Carolina at Chapel Hill. We thank Dr Donald L. Budenz for suggestions and advise, Dr Scott D. Lawrence for performing the sub-tenon injections; and members of the laboratory Dr Juan Carabana, Dr Brandon Lane and Renekia Elliot, for their help managing the sheep.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Borrás.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borrás, T., Buie, L. & Spiga, M. Inducible scAAV2.GRE.MMP1 lowers IOP long-term in a large animal model for steroid-induced glaucoma gene therapy. Gene Ther 23, 438–449 (2016). https://doi.org/10.1038/gt.2016.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2016.14

This article is cited by

Search

Quick links