Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned?

Abstract

Normal rhythms originate in the sino-atrial node, a specialized cardiac tissue consisting of only a few thousands of nodal pacemaker cells. Malfunction of pacemaker cells due to diseases or aging leads to rhythm generation disorders (for example, bradycardias and sick-sinus syndrome (SSS)), which often necessitate the implantation of electronic pacemakers. Although effective, electronic devices are associated with such shortcomings as limited battery life, permanent implantation of leads, lead dislodging, the lack of autonomic responses and so on. Here, various gene- and cell-based approaches, with a particular emphasis placed on the use of pluripotent stem cells and the hyperpolarization-activated cyclic nucleotide-gated-encoded pacemaker gene family, that have been pursued in the past decade to reconstruct bio-artificial pacemakers as alternatives will be discussed in relation to the basic biological insights and translational regenerative potential.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

References

  1. Boyett MR, Honjo H, Kodama I . The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res 2000; 47: 658–687.

    Article  CAS  PubMed  Google Scholar 

  2. Dobrzynski H, Boyett MR, Anderson RH . New insights into pacemaker activity: promoting understanding of sick sinus syndrome. Circulation 2007; 115: 1921–1932.

    Article  PubMed  Google Scholar 

  3. Boyett MR, Dobrzynski H, Lancaster MK, Jones SA, Honjo H, Kodama I . Sophisticated architecture is required for the sinoatrial node to perform its normal pacemaker function. J Cardiovasc Electrophysiol 2003; 14: 104–106.

    Article  PubMed  Google Scholar 

  4. Boyett MR, Honjo H, Yamamoto M, Nikmaram MR, Niwa R, Kodama I . Downward gradient in action potential duration along conduction path in and around the sinoatrial node. Am J Physiol 1999; 276: H686–H698.

    CAS  PubMed  Google Scholar 

  5. Boyett MR, Honjo H, Yamamoto M, Nikmaram MR, Niwa R, Kodama I . Regional differences in effects of 4-aminopyridine within the sinoatrial node. Am J Physiol 1998; 275: H1158–H1168.

    Article  CAS  PubMed  Google Scholar 

  6. Opthof T, de Jonge B, Jongsma HJ, Bouman LN . Functional morphology of the mammalian sinuatrial node. Eur Heart J 1987; 8: 1249–1259.

    Article  CAS  PubMed  Google Scholar 

  7. Berul CI, Cecchin F . Indications and techniques of pediatric cardiac pacing. Expert Rev Cardiovasc Ther 2003; 1: 165–176.

    Article  PubMed  Google Scholar 

  8. Siu CW, Lieu DK, Li RA . HCN-encoded pacemaker channels: from physiology and biophysics to bioengineering. J Membr Biol 2006; 214: 115–122.

    Article  CAS  PubMed  Google Scholar 

  9. Dubin AM, Berul CI . Electrophysiological interventions for treatment of congestive heart failure in pediatrics and congenital heart disease. Expert Rev Cardiovasc Ther 2007; 5: 111–118.

    Article  PubMed  Google Scholar 

  10. Silka MJ, Bar-Cohen Y . Pacemakers and implantable cardioverter-defibrillators in pediatric patients. Heart Rhythm 2006; 3: 1360–1366.

    Article  PubMed  Google Scholar 

  11. Walsh EP, Cecchin F . Recent advances in pacemaker and implantable defibrillator therapy for young patients. Curr Opin Cardiol 2004; 19: 91–96.

    Article  PubMed  Google Scholar 

  12. SlizJr NB, Johns JA . Cardiac pacing in infants and children. Cardiol Rev 2000; 8: 223–239.

    Article  CAS  Google Scholar 

  13. Gauss R, Seifert R, Kaupp UB . Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 1998; 393: 583–587.

    Article  CAS  PubMed  Google Scholar 

  14. Ludwig A, Zong X, Jeglitsch M, Hofmann F, Biel M . A family of hyperpolarization-activated mammalian cation channels. Nature 1998; 393: 587–591.

    Article  CAS  PubMed  Google Scholar 

  15. Santoro B, Grant SG, Bartsch D, Kandel ER . Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. Proc Natl Acad Sci USA 1997; 94: 14815–14820.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santoro B, Liu DT, Yao H, Bartsch D, Kandel ER, Siegelbaum SA et al. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 1998; 93: 717–729.

    Article  CAS  PubMed  Google Scholar 

  17. Santoro B, Tibbs GR . The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann NY Acad Sci 1999; 868: 741–764.

    Article  CAS  PubMed  Google Scholar 

  18. Biel M, Zong X, Ludwig A, Sautter A, Hofmann F . Structure and function of cyclic nucleotide-gated channels. Rev Physiol Biochem Pharmacol 1999; 135: 151–171.

    Article  CAS  PubMed  Google Scholar 

  19. Zagotta WN, Siegelbaum SA . Structure and function of cyclic nucleotide-gated channels. Annu Rev Neurosci 1996; 19: 235–263.

    Article  CAS  PubMed  Google Scholar 

  20. Wainger BJ, DeGennaro M, Santoro B, Siegelbaum SA, Tibbs GR . Molecular mechanism of cAMP modulation of HCN pacemaker channels. Nature 2001; 411: 805–810.

    Article  CAS  PubMed  Google Scholar 

  21. Moosmang S, Stieber J, Zong X, Biel M, Hofmann F, Ludwig A . Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. Eur J Biochem 2001; 268: 1646–1652.

    Article  CAS  PubMed  Google Scholar 

  22. Santoro B, Chen S, Luthi A, Pavlidis P, Shumyatsky GP, Tibbs GR et al. Molecular and functional heterogeneity of hyperpolarization-activated pacemaker channels in the mouse CNS. J Neurosci 2000; 20: 5264–5275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ulens C, Tytgat J . Functional heteromerization of HCN1 and HCN2 pacemaker channels. J Biol Chem 2001; 276: 6069–6072.

    Article  CAS  PubMed  Google Scholar 

  24. Xue T, Marban E, Li RA . Dominant-negative suppression of HCN1- and HCN2-encoded pacemaker currents by an engineered HCN1 construct: insights into structure-function relationships and multimerization. Circ Res 2002; 90: 1267–1273.

    Article  CAS  PubMed  Google Scholar 

  25. Er F, Larbig R, Ludwig A, Biel M, Hofmann F, Beuckelmann DJ et al. Dominant-negative suppression of HCN channels markedly reduces the native pacemaker current I(f) and undermines spontaneous beating of neonatal cardiomyocytes. Circulation 2003; 107: 485–489.

    Article  PubMed  Google Scholar 

  26. Chen J, Mitcheson JS, Tristani-Firouzi M, Lin M, Sanguinetti MC . The S4-S5 linker couples voltage sensing and activation of pacemaker channels. Proc Natl Acad Sci USA 2001; 98: 11277–11282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shi W, Wymore R, Yu H, Wu J, Wymore RT, Pan Z et al. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res 1999; 85: e1–e6.

    Article  CAS  PubMed  Google Scholar 

  28. Moroni A, Gorza L, Beltrame M, Gravante B, Vaccari T, Bianchi ME et al. Hyperpolarization-activated cyclic nucleotide-gated channel 1 is a molecular determinant of the cardiac pacemaker current I(f). J Biol Chem 2001; 276: 29233–29241.

    Article  CAS  PubMed  Google Scholar 

  29. Altomare C, Bucchi A, Camatini E, Baruscotti M, Viscomi C, Moroni A et al. Integrated allosteric model of voltage gating of HCN channels. J Gen Physiol 2001; 117: 519–532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ishii TM, Takano M, Ohmori H . Determinants of activation kinetics in mammalian hyperpolarization-activated cation channels. J Physiol 2001; 537 (Part 1): 93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ludwig A, Zong X, Hofmann F, Biel M . Structure and function of cardiac pacemaker channels. Cell Physiol Biochem 1999; 9: 179–186.

    Article  CAS  PubMed  Google Scholar 

  32. Seifert R, Scholten A, Gauss R, Mincheva A, Lichter P, Kaupp UB . Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci USA 1999; 96: 9391–9396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schulze-Bahr E, Neu A, Friederich P, Kaupp UB, Breithardt G, Pongs O et al. Pacemaker channel dysfunction in a patient with sinus node disease. J Clin Invest 2003; 111: 1537–1545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Milanesi R, Baruscotti M, Gnecchi-Ruscone T, DiFrancesco D . Familial sinus bradycardia associated with a mutation in the cardiac pacemaker channel. N Engl J Med 2006; 354: 151–157.

    Article  CAS  PubMed  Google Scholar 

  35. Zorn-Pauly K, Schaffer P, Pelzmann B, Lang P, Machler H, Rigler B et al. If in left human atrium: a potential contributor to atrial ectopy. Cardiovasc Res 2004; 64: 250–259.

    Article  CAS  PubMed  Google Scholar 

  36. Cerbai E, Pino R, Porciatti F, Sani G, Toscano M, Maccherini M et al. Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart. Circulation 1997; 95: 568–571.

    Article  CAS  PubMed  Google Scholar 

  37. Cerbai E, Sartiani L, DePaoli P, Pino R, Maccherini M, Bizzarri F et al. The properties of the pacemaker current I(F)in human ventricular myocytes are modulated by cardiac disease. J Mol Cell Cardiol 2001; 33: 441–448.

    Article  CAS  PubMed  Google Scholar 

  38. Siu CW, Azene EM, Au KW, Lau CP, Tse HF, Li RA . State-dependent accessibility of the P-S6 linker of pacemaker (HCN) channels supports a dynamic pore-to-gate coupling model. J Membr Biol 2009; 230: 35–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chan YC, Wang K, Au KW, Lau CP, Tse HF, Li RA . Probing the bradycardic drug binding receptor of HCN-encoded pacemaker channels. Pflugers Arch 2009; 459: 25–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Au KW, Siu CW, Lau CP, Tse HF, Li RA . Structural and functional determinants in the S5-P region of HCN-encoded pacemaker channels revealed by cysteine-scanning substitutions. Am J Physiol Cell Physiol 2008; 294: C136–C144.

    Article  CAS  PubMed  Google Scholar 

  41. Azene EM, Sang D, Tsang SY, Li RA . Pore-to-gate coupling of HCN channels revealed by a pore variant that contributes to gating but not permeation. Biochem Biophys Res Commun 2005; 327: 1131–1142.

    Article  CAS  PubMed  Google Scholar 

  42. Tsang SY, Lesso H, Li RA . Dissecting the structural and functional roles of the S3-S4 linker of pacemaker (hyperpolarization-activated cyclic nucleotide-modulated) channels by systematic length alterations. J Biol Chem 2004; 279: 43752–43759.

    Article  CAS  PubMed  Google Scholar 

  43. Tsang SY, Lesso H, Li RA . Critical intra-linker interactions of HCN1-encoded pacemaker channels revealed by interchange of S3-S4 determinants. Biochem Biophys Res Commun 2004; 322: 652–658.

    Article  CAS  PubMed  Google Scholar 

  44. Lesso H, Li RA . Helical secondary structure of the external S3-S4 linker of pacemaker (HCN) channels revealed by site-dependent perturbations of activation phenotype. J Biol Chem 2003; 278: 22290–22297.

    Article  CAS  PubMed  Google Scholar 

  45. Henrikson CA, Xue T, Dong P, Sang D, Marban E, Li RA . Identification of a surface charged residue in the S3-S4 linker of the pacemaker (HCN) channel that influences activation gating. J Biol Chem 2003; 278: 13647–13654.

    Article  CAS  PubMed  Google Scholar 

  46. Azene EM, Xue T, Li RA . Molecular basis of the effect of potassium on heterologously expressed pacemaker (HCN) channels. J Physiol 2003; 547 (Part 2): 349–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xue T, Li RA . An external determinant in the S5-P linker of the pacemaker (HCN) channel identified by sulfhydryl modification. J Biol Chem 2002; 277: 46233–46242.

    Article  CAS  PubMed  Google Scholar 

  48. Prole DL, Yellen G . Reversal of HCN channel voltage dependence via bridging of the S4-S5 linker and Post-S6. J Gen Physiol 2006; 128: 273–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xue T, Siu CW, Lieu DK, Lau CP, Tse HF, Li RA . Mechanistic role of I(f) revealed by induction of ventricular automaticity by somatic gene transfer of gating-engineered pacemaker (HCN) channels. Circulation 2007; 115: 1839–1850.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Miake J, Marban E, Nuss HB . Biological pacemaker created by gene transfer. Nature 2002; 419: 132–133.

    Article  CAS  PubMed  Google Scholar 

  51. Azene EM, Xue T, Marban E, Tomaselli GF, Li RA . Non-equilibrium behavior of HCN channels: insights into the role of HCN channels in native and engineered pacemakers. Cardiovasc Res 2005; 67: 263–273.

    Article  CAS  PubMed  Google Scholar 

  52. Tse HF, Xue T, Lau CP, Siu CW, Wang K, Zhang QY et al. Bioartificial sinus node constructed via in vivo gene transfer of an engineered pacemaker HCN Channel reduces the dependence on electronic pacemaker in a sick-sinus syndrome model. Circulation 2006; 114: 1000–1011.

    Article  CAS  PubMed  Google Scholar 

  53. Lieu DK, Chan YC, Lau CP, Tse HF, Siu CW, Li RA . Overexpression of HCN-encoded pacemaker current silences bioartificial pacemakers. Heart Rhythm 2008; 5: 1310–1317.

    Article  PubMed  Google Scholar 

  54. Chan YC, Siu CW, Lau YM, Lau CP, Li RA, Tse HF . Synergistic effects of inward rectifier (I) and pacemaker (I) currents on the induction of bioengineered cardiac automaticity. J Cardiovasc Electrophysiol 2009; 20: 1048–1054.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Robinson RB, Brink PR, Cohen IS, Rosen MR . I(f) and the biological pacemaker. Pharmacol Res 2006; 53: 407–415.

    Article  CAS  PubMed  Google Scholar 

  56. Qu J, Barbuti A, Protas L, Santoro B, Cohen IS, Robinson RB . HCN2 overexpression in newborn and adult ventricular myocytes: distinct effects on gating and excitability. Circ Res 2001; 89: E8–E14.

    Article  CAS  PubMed  Google Scholar 

  57. Kashiwakura Y, Cho HC, Barth AS, Azene E, Marban E . Gene transfer of a synthetic pacemaker channel into the heart: a novel strategy for biological pacing. Circulation 2006; 114: 1682–1686.

    Article  PubMed  Google Scholar 

  58. Nattel S . Inward rectifier-funny current balance and spontaneous automaticity: cautionary notes for biologic pacemaker development. Heart Rhythm 2008; 5: 1318–1319.

    Article  PubMed  Google Scholar 

  59. Plotnikov AN, Shlapakova I, Szabolcs MJ, Danilo Jr P, Lorell BH, Potapova IA et al. Xenografted adult human mesenchymal stem cells provide a platform for sustained biological pacemaker function in canine heart. Circulation 2007; 116: 706–713.

    Article  PubMed  Google Scholar 

  60. Plotnikov AN, Sosunov EA, Qu J, Shlapakova IN, Anyukhovsky EP, Liu L et al. Biological pacemaker implanted in canine left bundle branch provides ventricular escape rhythms that have physiologically acceptable rates. Circulation 2004; 109: 506–512.

    Article  PubMed  Google Scholar 

  61. Boheler KR . Functional markers and the ‘homogeneity’ of human mesenchymal stem cells. J Physiol 2004; 554: 592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Robinson RB, Rosen MR, Brink PR, Cohen IS . Letter regarding the article by Xue et al., ‘Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes’. Circulation 2005; 112: e82.

    Article  PubMed  Google Scholar 

  63. Xue T, Li RA . Circulation 2005; 112: e82–e83.

  64. Cho HC, Kashiwakura Y, Marban E . Creation of a biological pacemaker by cell fusion. Circ Res 2007; 100: 1112–1115.

    Article  CAS  PubMed  Google Scholar 

  65. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425: 968–973.

    Article  CAS  PubMed  Google Scholar 

  66. Gussoni E, Bennett RR, Muskiewicz KR, Meyerrose T, Nolta JA, Gilgoff I et al. Long-term persistence of donor nuclei in a Duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 2002; 110: 807–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Weimann JM, Johansson CB, Trejo A, Blau HM . Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol 2003; 5: 959–966.

    Article  PubMed  Google Scholar 

  68. Zhang H, Lau DH, Shlapakova IN, Zhao X, Danilo P, Robinson RB et al. Implantation of sinoatrial node cells into canine right ventricle: biological pacing appears limited by the substrate. Cell Transplant 2011; e-pub ahead of print 8 March 2011; PMID: 21429290.

  69. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–1147.

    Article  CAS  PubMed  Google Scholar 

  70. Kehat I, Kenyagin-Karsenti D, Snir M, Segev H, Amit M, Gepstein A et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J Clin Invest 2001; 108: 407–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Xu CPolice S, Rao N, Carpenter MK . Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ Res 2002; 91: 501–508.

    Article  CAS  Google Scholar 

  72. Poon E, Kong CW, Li RA . Human pluripotent stem cell-based approaches for myocardial repair: from the electrophysiological perspective. Mol Pharm 2011; 8: 1495–1504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kong CW, Akar FG, Li RA . Translational potential of human embryonic and induced pluripotent stem cells for myocardial repair: insights from experimental models. Thromb Haemost 2010; 104: 30–38.

    Article  CAS  PubMed  Google Scholar 

  74. Xue T, Cho HC, Akar FG, Tsang SY, Jones SP, Marban E et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 2005; 111: 11–20.

    Article  PubMed  Google Scholar 

  75. Kehat I, Khimovich L, Caspi O, Gepstein A, Shofti R, Arbel G et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat Biotechnol 2004; 22: 1282–1289.

    Article  CAS  PubMed  Google Scholar 

  76. Moore JC, Fu J, Chan YC, Lin D, Tran H, Tse HF et al. Distinct cardiogenic preferences of two human embryonic stem cell (hESC) lines are imprinted in their proteomes in the pluripotent state. Biochem Biophys Res Commun 2008; 372: 553–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Miake J, Marban E, Nuss HB . Functional role of inward rectifier current in heart probed by Kir2.1 overexpression and dominant-negative suppression. J Clin Invest 2003; 111: 1529–1536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Potapova IA, Gaudette GR, Brink PR, Robinson RB, Rosen MR, Cohen IS et al. Mesenchymal stem cells support migration, extracellular matrix invasion, proliferation, and survival of endothelial cells in vitro. Stem Cells 2007; 25: 1761–1768.

    Article  CAS  PubMed  Google Scholar 

  79. Plotnikov AN, Bucchi A, Shlapakova I, Danilo Jr P, Brink PR, Robinson RB et al. HCN212-channel biological pacemakers manifesting ventricular tachyarrhythmias are responsive to treatment with I(f) blockade. Heart Rhythm 2008; 5: 282–288.

    Article  PubMed  Google Scholar 

  80. Bucchi A, Plotnikov AN, Shlapakova I, DaniloJr P, Kryukova Y, Qu J et al. Wild-type and mutant HCN channels in a tandem biological-electronic cardiac pacemaker. Circulation 2006; 114: 992–999.

    Article  PubMed  Google Scholar 

  81. Qu J, Plotnikov AN, DaniloJr P, Shlapakova I, Cohen IS, Robinson RB et al. Expression and function of a biological pacemaker in canine heart. Circulation 2003; 107: 1106–1109.

    Article  PubMed  Google Scholar 

  82. Nishi K, Yoshikawa Y, Sugahara K, Morioka T . Changes in electrical activity and ultrastructure of sinoatrial nodal cells of the rabbit's heart exposed to hypoxic solution. Circ Res 1980; 46: 201–213.

    Article  CAS  PubMed  Google Scholar 

  83. Kass-Eisler A, Falck-Pedersen E, Alvira M, Rivera J, Buttrick PM, Wittenberg BA et al. Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo. Proc Natl Acad Sci USA 1993; 90: 11498–11502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Muhlhauser J, Jones M, Yamada I, Cirielli C, Lemarchand P, Gloe TR et al. Safety and efficacy of in vivo gene transfer into the porcine heart with replication-deficient, recombinant adenovirus vectors. Gene Ther 1996; 3: 145–153.

    CAS  PubMed  Google Scholar 

  85. French BA, Mazur W, Geske RS, Bolli R . Direct in vivo gene transfer into porcine myocardium using replication-deficient adenoviral vectors. Circulation 1994; 90: 2414–2424.

    Article  CAS  PubMed  Google Scholar 

  86. Dandapat A, Hu CP, Li D, Liu Y, Chen H, Hermonat PL et al. Overexpression of TGFbeta1 by adeno-associated virus type-2 vector protects myocardium from ischemia-reperfusion injury. Gene Ther 2008; 15: 415–423.

    Article  CAS  PubMed  Google Scholar 

  87. Muller OJ, Leuchs B, Pleger ST, Grimm D, Franz WM, Katus HA et al. Improved cardiac gene transfer by transcriptional and transductional targeting of adeno-associated viral vectors. Cardiovasc Res 2006; 70: 70–78.

    Article  CAS  PubMed  Google Scholar 

  88. Su H, Joho S, Huang Y, Barcena A, Arakawa-Hoyt J, Grossman W et al. Adeno-associated viral vector delivers cardiac-specific and hypoxia-inducible VEGF expression in ischemic mouse hearts. Proc Natl Acad Sci USA 2004; 101: 16280–16285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Djurovic S, Iversen N, Jeansson S, Hoover F, Christensen G . Comparison of nonviral transfection and adeno-associated viral transduction on cardiomyocytes. Mol Biotechnol 2004; 28: 21–32.

    Article  CAS  PubMed  Google Scholar 

  90. Ly H, Kawase Y, Yoneyama R, Hajjar RJ . Gene therapy in the treatment of heart failure. Physiology (Bethesda) 2007; 22: 81–96.

    CAS  Google Scholar 

  91. Maeda Y, Ikeda U, Shimpo M, Ueno S, Ogasawara Y, Urabe M et al. Efficient gene transfer into cardiac myocytes using adeno-associated virus (AAV) vectors. J Mol Cell Cardiol 1998; 30: 1341–1348.

    Article  CAS  PubMed  Google Scholar 

  92. Xiao X, McCown TJ, Li J, Breese GR, Morrow AL, Samulski RJ . Adeno-associated virus (AAV) vector antisense gene transfer in vivo decreases GABA(A) alpha1 containing receptors and increases inferior collicular seizure sensitivity. Brain Res 1997; 756: 76–83.

    Article  CAS  PubMed  Google Scholar 

  93. Yang CC, Xiao X, Zhu X, Ansardi DC, Epstein ND, Frey MR et al. Cellular recombination pathways and viral terminal repeat hairpin structures are sufficient for adeno-associated virus integration in vivo and in vitro. J Virol 1997; 71: 9231–9247.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Giacca M, Baker AH . Heartening results: the CUPID gene therapy trial for heart failure. Mol Ther 2011; 19: 1181–1182.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Tilemann L, Ishikawa K, Weber T, Hajjar RJ . Gene therapy for heart failure. Circ Res 2012; 110: 777–793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Croteau GA, Martin DB, Camp J, Yost M, Conrad C, Zeitlin PL et al. Evaluation of exposure and health care worker response to nebulized administration of tgAAVCF to patients with cystic fibrosis. Ann Occup Hyg 2004; 48: 673–681.

    PubMed  Google Scholar 

  97. Wagner JA, Nepomuceno IB, Messner AH, Moran ML, Batson EP, Dimiceli S et al. A phase II, double-blind, randomized, placebo-controlled clinical trial of tgAAVCF using maxillary sinus delivery in patients with cystic fibrosis with antrostomies. Hum Gene Ther 2002; 13: 1349–1359.

    Article  CAS  PubMed  Google Scholar 

  98. Chuah MK, Collen D, VandenDriessche T . Clinical gene transfer studies for hemophilia A. Semin Thromb Hemost 2004; 30: 249–256.

    Article  CAS  PubMed  Google Scholar 

  99. High KA . Clinical gene transfer studies for hemophilia B. Semin Thromb Hemost 2004; 30: 257–267.

    Article  CAS  PubMed  Google Scholar 

  100. Kaplitt MG, Feigin A, Tang C, Fitzsimons HL, Mattis P, Lawlor PA et al. Safety and tolerability of gene therapy with an adeno-associated virus (AAV) borne GAD gene for Parkinson's disease: an open label, phase I trial. Lancet 2007; 369: 2097–2105.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the NIH—R01 HL72857, the CC Wong Foundation Stem Cell Fund and the Research Grant Council (T13-706/11 and 103544).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R A Li.

Ethics declarations

Competing interests

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, R. Gene- and cell-based bio-artificial pacemaker: what basic and translational lessons have we learned?. Gene Ther 19, 588–595 (2012). https://doi.org/10.1038/gt.2012.33

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2012.33

Keywords

This article is cited by

Search

Quick links