Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Highly efficient multipotent differentiation of human periodontal ligament fibroblasts induced by combined BMP4 and hTERT gene transfer

Abstract

Because periodontal ligament (PDL) cells are reported to contain progenitor or stem cell populations, they are considered a beneficial cell source for clinical periodontal regeneration. Both bone morphogenetic protein 4 (BMP4) and human telomerase reverse transcriptase (hTERT) have essential roles in the modulation of stem cell properties. In this study we report for the first time that the combined ectopic expression of BMP4 and hTERT significantly enhanced the multipotent differentiation efficiency and capacity of human PDL fibroblasts (PFs), as shown by osteogenic, adipogenic and neurogenic differentiation in vitro, and cementum/PDL-like tissue regeneration in vivo. These findings may be attributed, at least in part, to the original upregulation of important stem cell markers, such as scleraxis, Stro-1 and CD146, and the extremely lowered threshold for BMP concentration to activate BMP signaling by enhanced basal phosphorylation levels of Smad 1/5/8. In addition, the significantly reduced expression levels of CD146 and CD90 with the presence of Noggin confirms the direct effect of BMP4 on the stem cell-like phenotype of genetically modified PF cells (BT-PFs). Furthermore, BT-PFs exhibited a high neural differentiation capacity (>75%). After transplantation into NOD/SCID mice, genetically modified-PFs generated cementum/PDL-like structures on the surface of the carrier. The multipotency of these modified cells potentially provides an attractive source of stem cells for therapeutic purposes and regenerative medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

oDM:

osteogenic differentiation medium

aDM:

adipogenic differentiation medium

nDM:

neuronal differentiation medium

CM:

regular medium

Col I :

type I collagen

POSTN :

periostin

ALP :

alkaline phosphatase

BSP :

bone sialoprotein

LPL :

lipoprotein lipase

PPARγ2 :

peroxisome proliferator-activated receptor γ2

GFAP :

glial fibrillary acidic protein

MAP :

microtubule-associated protein 2

OPN :

osteopontin

MSC:

mesenchymal stem cell

RT-PCR:

reverse transcriptase PCR

HA/TCP:

hydroxyapatite/tricalcium phosphate

PDLSC:

PDL stem cell

DMEM:

Dulbecco’s modified Eagle’s medium

FBS:

fetal bovine serum

cDNA:

complementary DNA

References

  1. Lekic PC, Rajshankar D, Chen H, Tenenbaum H, McCulloch CA . Transplantation of labeled periodontal ligament cells promotes regeneration of alveolar bone. Anat Rec 2001; 262: 193–202.

    Article  CAS  Google Scholar 

  2. Saito Y, Yoshizawa T, Takizawa F, Ikegame M, Ishibashi O, Okuda K et al. A cell line with characteristics of the periodontal ligament fibroblasts is negatively regulated for mineralization and Runx2/Cbfa1/Osf2 activity, part of which can be overcome by bone morphogenetic protein-2. J Cell Sci 2002; 115: 4191–4200.

    Article  CAS  Google Scholar 

  3. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 2004; 364: 149–155.

    Article  CAS  Google Scholar 

  4. Lindroos B, Maenpaa K, Ylikomi T, Oja H, Suuronen R, Miettinen S . Characterisation of human dental stem cells and buccal mucosa fibroblasts. Biochem Biophys Res Commun 2008; 368: 329–335.

    Article  CAS  Google Scholar 

  5. Techawattanawisal W, Nakahama K, Komaki M, Abe M, Takagi Y, Morita I . Isolation of multipotent stem cells from adult rat periodontal ligament by neurosphere-forming culture system. Biochem Biophys Res Commun 2007; 357: 917–923.

    Article  CAS  Google Scholar 

  6. Tomokiyo A, Maeda H, Fujii S, Wada N, Shima K, Akamine A . Development of a multipotent clonal human periodontal ligament cell line. Differentiation 2008; 76: 337–347.

    Article  CAS  Google Scholar 

  7. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo BM, Zhang C et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS ONE 2006; 1: e79.

    Article  Google Scholar 

  8. Liu Y, Zheng Y, Ding G, Fang D, Zhang C, Bartold PM et al. Periodontal ligament stem cell-mediated treatment for periodontitis in miniature swine. Stem Cells 2008; 26: 1065–1073.

    Article  Google Scholar 

  9. Fujii S, Maeda H, Wada N, Kano Y, Akamine A . Establishing and characterizing human periodontal ligament fibroblasts immortalized by SV40T-antigen and hTERT gene transfer. Cell Tissue Res 2006; 324: 117–125.

    Article  CAS  Google Scholar 

  10. Kamata N, Fujimoto R, Tomonari M, Taki M, Nagayama M, Yasumoto S . Immortalization of human dental papilla, dental pulp, periodontal ligament cells and gingival fibroblasts by telomerase reverse transcriptase. J Oral Pathol Med 2004; 33: 417–423.

    Article  CAS  Google Scholar 

  11. Fujii S, Maeda H, Wada N, Tomokiyo A, Saito M, Akamine A . Investigating a clonal human periodontal ligament progenitor/stem cell line in vitro and in vivo. J Cell Physiol 2008; 215: 743–749.

    Article  CAS  Google Scholar 

  12. Coura GS, Garcez RC, de Aguiar CB, Alvarez-Silva M, Magini RS, Trentin AG . Human periodontal ligament: a niche of neural crest stem cells. J Periodontal Res 2008; 43: 531–536.

    Article  CAS  Google Scholar 

  13. Kang SK, Putnam L, Dufour J, Ylostalo J, Jung JS, Bunnell BA . Expression of telomerase extends the lifespan and enhances osteogenic differentiation of adipose tissue-derived stromal cells. Stem Cells 2004; 22: 1356–1372.

    Article  CAS  Google Scholar 

  14. Gronthos S, Chen S, Wang CY, Robey PG, Shi S . Telomerase accelerates osteogenesis of bone marrow stromal stem cells by upregulation of CBFA1, osterix, and osteocalcin. J Bone Miner Res 2003; 18: 716–722.

    Article  CAS  Google Scholar 

  15. Mori T, Kiyono T, Imabayashi H, Takeda Y, Tsuchiya K, Miyoshi S et al. Combination of hTERT and bmi-1, E6, or E7 induces prolongation of the life span of bone marrow stromal cells from an elderly donor without affecting their neurogenic potential. Mol Cell Biol 2005; 25: 5183–5195.

    Article  CAS  Google Scholar 

  16. Isenmann S, Cakouros D, Zannettino A, Shi S, Gronthos S . hTERT transcription is repressed by Cbfa1 in human mesenchymal stem cell populations. J Bone Miner Res 2007; 22: 897–906.

    Article  CAS  Google Scholar 

  17. Varga AC, Wrana JL . The disparate role of BMP in stem cell biology. Oncogene 2005; 24: 5713–5721.

    Article  CAS  Google Scholar 

  18. Schmierer B, Hill CS . TGFbeta-SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 2007; 8: 970–982.

    Article  CAS  Google Scholar 

  19. Chen HL, Panchision DM . Concise review: bone morphogenetic protein pleiotropism in neural stem cells and their derivatives—alternative pathways, convergent signals. Stem Cells 2007; 25: 63–68.

    Article  CAS  Google Scholar 

  20. Okamoto M, Murai J, Yoshikawa H, Tsumaki N . Bone morphogenetic proteins in bone stimulate osteoclasts and osteoblasts during bone development. J Bone Miner Res 2006; 21: 1022–1033.

    Article  CAS  Google Scholar 

  21. Weible II MW, Chan-Ling T . Phenotypic characterization of neural stem cells from human fetal spinal cord: synergistic effect of LIF and BMP4 to generate astrocytes. Glia 2007; 55: 1156–1168.

    Article  Google Scholar 

  22. Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ, Tahan SR . Increased expression of stem cell markers in malignant melanoma. Mod Pathol 2007; 20: 102–107.

    Article  CAS  Google Scholar 

  23. Singh S, Jones BJ, Crawford R, Xiao Y . Characterization of a mesenchymal-like stem cell population from osteophyte tissue. Stem Cells Dev 2008; 17: 245–254.

    Article  CAS  Google Scholar 

  24. Woodbury D, Schwarz EJ, Prockop DJ, Black IB . Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000; 61: 364–370.

    Article  CAS  Google Scholar 

  25. Munoz-Elias G, Woodbury D, Black IB . Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions. Stem Cells 2003; 21: 437–448.

    Article  Google Scholar 

  26. Wada N, Menicanin D, Shi S, Bartold PM, Gronthos S . Immunomodulatory properties of human periodontal ligament stem cells. J Cell Physiol 2009; 219: 667–676.

    Article  CAS  Google Scholar 

  27. Zheng W, Wang S, Ma D, Tang L, Duan Y, Jin Y . Loss of proliferation and differentiation capacity of aged human periodontal ligament stem cells and rejuvenation by exposure to the young extrinsic environment. Tissue Eng Part A 2009; 15: 2363–2371.

    Article  CAS  Google Scholar 

  28. Kudo Y, Hiraoka M, Kitagawa S, Miyauchi M, Kakuo S, Zhao M et al. Establishment of human cementifying fibroma cell lines by transfection with temperature-sensitive simian virus-40 T-antigen gene and hTERT gene. Bone 2002; 30: 712–717.

    Article  CAS  Google Scholar 

  29. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–872.

    Article  CAS  Google Scholar 

  30. Shi S, Gronthos S, Chen S, Reddi A, Counter CM, Robey PG et al. Bone formation by human postnatal bone marrow stromal stem cells is enhanced by telomerase expression. Nat Biotechnol 2002; 20: 587–591.

    Article  CAS  Google Scholar 

  31. Abdallah BM, Haack-Sorensen M, Burns JS, Elsnab B, Jakob F, Hokland P et al. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite [corrected] extensive proliferation. Biochem Biophys Res Commun 2005; 326: 527–538.

    Article  CAS  Google Scholar 

  32. Yang YX, Miao ZC, Zhang HJ, Wang Y, Gao JX, Feng MF . Establishment and characterization of a human telomerase catalytic subunit-transduced fetal bone marrow-derived osteoblastic cell line. Differentiation 2007; 75: 24–34.

    Article  CAS  Google Scholar 

  33. Zhao X, Malhotra GK, Lele SM, Lele MS, West WW, Eudy JD et al. Telomerase-immortalized human mammary stem/progenitor cells with ability to self-renew and differentiate. Proc Natl Acad Sci USA 2009; 107: 14146–14151.

    Article  Google Scholar 

  34. Goldman O, Feraud O, Boyer-Di Ponio J, Driancourt C, Clay D, Le Bousse-Kerdiles MC et al. A boost of BMP4 accelerates the commitment of human embryonic stem cells to the endothelial lineage. Stem Cells 2009; 27: 1750–1759.

    Article  CAS  Google Scholar 

  35. Li JZ, Li H, Sasaki T, Holman D, Beres B, Dumont RJ et al. Osteogenic potential of five different recombinant human bone morphogenetic protein adenoviral vectors in the rat. Gene Therapy 2003; 10: 1735–1743.

    Article  CAS  Google Scholar 

  36. Samee M, Kasugai S, Kondo H, Ohya K, Shimokawa H, Kuroda S . Bone morphogenetic protein-2 (BMP-2) and vascular endothelial growth factor (VEGF) transfection to human periosteal cells enhances osteoblast differentiation and bone formation. J Pharmacol Sci 2008; 108: 18–31.

    Article  CAS  Google Scholar 

  37. Widera D, Grimm WD, Moebius JM, Mikenberg I, Piechaczek C, Gassmann G et al. Highly efficient neural differentiation of human somatic stem cells, isolated by minimally invasive periodontal surgery. Stem Cells Dev 2007; 16: 447–460.

    Article  Google Scholar 

  38. Huang GT, Gronthos S, Shi S . Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine. J Dent Res 2009; 88: 792–806.

    Article  CAS  Google Scholar 

  39. Hiraga T, Ninomiya T, Hosoya A, Takahashi M, Nakamura H . Formation of bone-like mineralized matrix by periodontal ligament cells in vivo: a morphological study in rats. J Bone Miner Metab 2009; 27: 149–157.

    Article  Google Scholar 

  40. Shen HC, Peng H, Usas A, Gearhart B, Cummins J, Fu FH et al. Ex vivo gene therapy-induced endochondral bone formation: comparison of muscle-derived stem cells and different subpopulations of primary muscle-derived cells. Bone 2004; 34: 982–992.

    Article  CAS  Google Scholar 

  41. Chen YL, Chen PK, Jeng LB, Huang CS, Yang LC, Chung HY et al. Periodontal regeneration using ex vivo autologous stem cells engineered to express the BMP-2 gene: an alternative to alveolaplasty. Gene Therapy 2008; 15: 1469–1477.

    Article  CAS  Google Scholar 

  42. Fatherazi S, Matsa-Dunn D, Foster BL, Rutherford RB, Somerman MJ, Presland RB . Phosphate regulates osteopontin gene transcription. J Dent Res 2009; 88: 39–44.

    Article  CAS  Google Scholar 

  43. Komaki M, Karakida T, Abe M, Oida S, Mimori K, Iwasaki K et al. Twist negatively regulates osteoblastic differentiation in human periodontal ligament cells. J Cell Biochem 2007; 100: 303–314.

    Article  CAS  Google Scholar 

  44. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA . Creation of human tumour cells with defined genetic elements. Nature 1999; 400: 464–468.

    Article  CAS  Google Scholar 

  45. Krebsbach PH, Kuznetsov SA, Satomura K, Emmons RV, Rowe DW, Robey PG . Bone formation in vivo: comparison of osteogenesis by transplanted mouse and human marrow stromal fibroblasts. Transplantation 1997; 63: 1059–1069.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by grants from the Taiwan National Health Research Institutes (NHRI) and grants from the National Taiwan University, School of Dentistry and Graduate Institute of Clinical Dentistry.

Author ContributionHsin-Wu Mi: conception and design, collection and/or assembly of data and manuscript writing; Ming-Cheng Lee: provision of study material, collection and/or assembly of data; Earl Fu: data analysis and interpretation and manuscript writing; Lu-Ping Chow: data analysis and interpretation and manuscript writing; and Chun-Pin Lin: financial support, data analysis and interpretation and manuscript writing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C-P Lin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mi, HW., Lee, MC., Fu, E. et al. Highly efficient multipotent differentiation of human periodontal ligament fibroblasts induced by combined BMP4 and hTERT gene transfer. Gene Ther 18, 452–461 (2011). https://doi.org/10.1038/gt.2010.158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gt.2010.158

Keywords

This article is cited by

Search

Quick links