Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nutrigenomics and molecular nutrition

Mendelian randomisation study of the associations of vitamin B12 and folate genetic risk scores with blood pressure and fasting serum lipid levels in three Danish population-based studies

Abstract

Background/Objectives:

The aim was to examine the association of genetic risk scores (GRSs) of vitamin B12 and folate-associated variants with blood pressure and lipids.

Subjects/Methods:

The study included 12 532 adults from three population-based studies (Inter99, Health2006 and Dan-MONICA10) conducted in Denmark. GRSs were calculated by summarising the number of vitamin B12 and folate increasing alleles. Weighted GRSs were calculated as the sum of weights for each allele corresponding to genetic effects sizes.

Results:

GRSs for serum vitamin B12 and folate were associated with serum vitamin B12 and folate, respectively. The β coefficients (95% confidence interval (CI), P-value) for regression of log-transformed serum B12/folate on the weighted GRSs were 0.57 (0.54, 0.61), P<0.001 and 0.85 (0.70, 1.01), P<0.01. No associations were observed between the vitamin B12 GRSs and any of the blood pressure and lipid-related outcomes in the combined analyses. Increasing number of folate increasing alleles was associated with increased high-density lipoprotein (HDL) cholesterol concentrations (β coefficient (95% CI, P-value) for regression of log-transformed HDL on the weighted GRSs, 0.081 (0.015, 0.148), P=0.017), but not with blood pressure, triglyceride, and low-density lipoprotein and total cholesterol levels.

Conclusions:

GRSs were not associated with blood pressure and lipid levels, except for an association between the GRS for folate and HDL cholesterol. Further studies are needed to determine whether a causal association between folate and HDL cholesterol exists.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Debreceni B, Debreceni L . The role of homocysteine-lowering B-vitamins in the primary prevention of cardiovascular disease. Cardiovasc Ther 2014; 32: 130–138.

    Article  CAS  Google Scholar 

  2. Rimm EB, Stampfer MJ . Folate and cardiovascular disease: one size does not fit all. Lancet 2011; 378: 544–546.

    Article  Google Scholar 

  3. Selhub J . Homocysteine metabolism. Annu Rev Nutr 1999; 19: 217–246.

    Article  CAS  Google Scholar 

  4. Homocysteine Studies Collaboration. Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 2002; 288: 2015–2021.

    Article  Google Scholar 

  5. Wald DS, Law M, Morris JK . Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 2002; 325: 1202.

    Article  Google Scholar 

  6. de Bree A, Verschuren WM, Blom HJ . Biological cardiovascular risk factors and plasma homocysteine levels in the general Dutch population. Atherosclerosis 2001; 154: 513–514.

    Article  CAS  Google Scholar 

  7. Husemoen LL, Linneberg A, Fenger M, Thuesen BH, Jorgensen T . Changes in lifestyle, biological risk factors and total homocysteine in relation to MTHFR C677T genotype: a 5-year follow-up study. Eur J Clin Nutr 2009; 63: 1233–1240.

    Article  CAS  Google Scholar 

  8. Husemoen LL, Skaaby T, Jorgensen T, Thuesen BH, Fenger M, Grarup N et al. MTHFR C677T genotype and cardiovascular risk in a general population without mandatory folic acid fortification. Eur J Nutr 2014.

  9. Husemoen LL, Thomsen TF, Fenger M, Jorgensen T . Changes in lifestyle and total homocysteine in relation to MTHFR(C677T) genotype: the Inter99 study. Eur J Clin Nutr 2006; 60: 614–622.

    Article  CAS  Google Scholar 

  10. Nygard O, Vollset SE, Refsum H, Stensvold I, Tverdal A, Nordrehaug JE et al. Total plasma homocysteine and cardiovascular risk profile. The Hordaland Homocysteine Study. JAMA 1995; 274: 1526–1533.

    Article  CAS  Google Scholar 

  11. Lowering blood homocysteine with folic acid based supplements: meta-analysis of randomised trials. Homocysteine Lowering Trialists' Collaboration. BMJ 1998; 316: 894–898.

  12. Bazzano LA, He J, Ogden LG, Loria C, Vupputuri S, Myers L et al. Dietary intake of folate and risk of stroke in US men and women: NHANES I Epidemiologic Follow-up Study. National Health and Nutrition Examination Survey. Stroke 2002; 33: 1183–1188.

    Article  CAS  Google Scholar 

  13. Giles WH, Kittner SJ, Anda RF, Croft JB, Casper ML . Serum folate and risk for ischemic stroke. First National Health and Nutrition Examination Survey epidemiologic follow-up study. Stroke 1995; 26: 1166–1170.

    Article  CAS  Google Scholar 

  14. Imamura A, Murakami R, Takahashi R, Cheng XW, Numaguchi Y, Murohara T et al. Low folate levels may be an atherogenic factor regardless of homocysteine levels in young healthy nonsmokers. Metabolism 2010; 59: 728–733.

    Article  CAS  Google Scholar 

  15. Voutilainen S, Lakka TA, Porkkala-Sarataho E, Rissanen T, Kaplan GA, Salonen JT . Low serum folate concentrations are associated with an excess incidence of acute coronary events: the Kuopio Ischaemic Heart Disease Risk Factor Study. Eur J Clin Nutr 2000; 54: 424–428.

    Article  CAS  Google Scholar 

  16. Voutilainen S, Rissanen TH, Virtanen J, Lakka TA, Salonen JT . Low dietary folate intake is associated with an excess incidence of acute coronary events: The Kuopio Ischemic Heart Disease Risk Factor Study. Circulation 2001; 103: 2674–2680.

    Article  CAS  Google Scholar 

  17. Voutilainen S, Virtanen JK, Rissanen TH, Alfthan G, Laukkanen J, Nyyssonen K et al. Serum folate and homocysteine and the incidence of acute coronary events: the Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr 2004; 80: 317–323.

    Article  CAS  Google Scholar 

  18. Antoniades C, Antonopoulos AS, Tousoulis D, Marinou K, Stefanadis C . Homocysteine and coronary atherosclerosis: from folate fortification to the recent clinical trials. Eur Heart J 2009; 30: 6–15.

    Article  CAS  Google Scholar 

  19. Yang Q, Botto LD, Erickson JD, Berry RJ, Sambell C, Johansen H et al. Improvement in stroke mortality in Canada and the United States, 1990 to 2002. Circulation 2006; 113: 1335–1343.

    Article  Google Scholar 

  20. Albert CM, Cook NR, Gaziano JM, Zaharris E, MacFadyen J, Danielson E et al. Effect of folic acid and B vitamins on risk of cardiovascular events and total mortality among women at high risk for cardiovascular disease: a randomized trial. JAMA 2008; 299: 2027–2036.

    Article  CAS  Google Scholar 

  21. Armitage JM, Bowman L, Clarke RJ, Wallendszus K, Bulbulia R, Rahimi K et al. Effects of homocysteine-lowering with folic acid plus vitamin B12 vs placebo on mortality and major morbidity in myocardial infarction survivors: a randomized trial. JAMA 2010; 303: 2486–2494.

    Article  CAS  Google Scholar 

  22. Bonaa KH, Njolstad I, Ueland PM, Schirmer H, Tverdal A, Steigen T et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N Engl J Med 2006; 354: 1578–1588.

    Article  CAS  Google Scholar 

  23. Ebbing M, Bleie O, Ueland PM, Nordrehaug JE, Nilsen DW, Vollset SE et al. Mortality and cardiovascular events in patients treated with homocysteine-lowering B vitamins after coronary angiography: a randomized controlled trial. JAMA 2008; 300: 795–804.

    Article  CAS  Google Scholar 

  24. Jamison RL, Hartigan P, Kaufman JS, Goldfarb DS, Warren SR, Guarino PD et al. Effect of homocysteine lowering on mortality and vascular disease in advanced chronic kidney disease and end-stage renal disease: a randomized controlled trial. JAMA 2007; 298: 1163–1170.

    Article  CAS  Google Scholar 

  25. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 2006; 354: 1567–1577.

    Article  CAS  Google Scholar 

  26. Marti-Carvajal AJ, Sola I, Lathyris D . Homocysteine-lowering interventions for preventing cardiovascular events. Cochrane Database Syst Rev 2015; 1: CD006612.

    PubMed  Google Scholar 

  27. Toole JF, Malinow MR, Chambless LE, Spence JD, Pettigrew LC, Howard VJ et al. Lowering homocysteine in patients with ischemic stroke to prevent recurrent stroke, myocardial infarction, and death: the Vitamin Intervention for Stroke Prevention (VISP) randomized controlled trial. JAMA 2004; 291: 565–575.

    Article  CAS  Google Scholar 

  28. Holmes MV, Newcombe P, Hubacek JA, Sofat R, Ricketts SL, Cooper J et al. Effect modification by population dietary folate on the association between MTHFR genotype, homocysteine, and stroke risk: a meta-analysis of genetic studies and randomised trials. Lancet 2011; 378: 584–594.

    Article  CAS  Google Scholar 

  29. Saposnik G, Ray JG, Sheridan P, McQueen M, Lonn E . Homocysteine-lowering therapy and stroke risk, severity, and disability: additional findings from the HOPE 2 trial. Stroke 2009; 40: 1365–1372.

    Article  CAS  Google Scholar 

  30. Spence JD, Bang H, Chambless LE, Stampfer MJ . Vitamin intervention for stroke prevention trial: an efficacy analysis. Stroke 2005; 36: 2404–2409.

    Article  CAS  Google Scholar 

  31. Casas JP, Bautista LE, Smeeth L, Sharma P, Hingorani AD . Homocysteine and stroke: evidence on a causal link from mendelian randomisation. Lancet 2005; 365: 224–232.

    Article  CAS  Google Scholar 

  32. Klerk M, Verhoef P, Clarke R, Blom HJ, Kok FJ, Schouten EG . MTHFR 677C—&gt;T polymorphism and risk of coronary heart disease: a meta-analysis. JAMA 2002; 288: 2023–2031.

    Article  CAS  Google Scholar 

  33. Lewis SJ, Ebrahim S, Davey SG . Meta-analysis of MTHFR 677C-&gt;T polymorphism and coronary heart disease: does totality of evidence support causal role for homocysteine and preventive potential of folate? BMJ 2005; 331: 1053.

    Article  CAS  Google Scholar 

  34. Hersoug LG, Husemoen LL, Thomsen SF, Sigsgaard T, Thuesen BH, Linneberg A . Association of indoor air pollution with rhinitis symptoms, atopy and nitric oxide levels in exhaled air. Int Arch Allergy Immunol 2010; 153: 403–412.

    Article  CAS  Google Scholar 

  35. Jorgensen T, Borch-Johnsen K, Thomsen TF, Ibsen H, Glumer C, Pisinger C . A randomized non-pharmacological intervention study for prevention of ischaemic heart disease: baseline results Inter99. Eur J Cardiovasc Prev Rehabil 2003; 10: 377–386.

    Article  Google Scholar 

  36. Husemoen LL, Skaaby T, Thuesen BH, Jorgensen T, Fenger RV, Linneberg A . Serum 25(OH)D and incident type 2 diabetes: a cohort study. Eur J Clin Nutr 2012; 66: 1309–1314.

    Article  CAS  Google Scholar 

  37. Husemoen LL, Jorgensen T, Borch-Johnsen K, Hansen T, Pedersen O, Linneberg A . The association of alcohol and alcohol metabolizing gene variants with diabetes and coronary heart disease risk factors in a white population. PLoS One 2010; 5: e11735.

    Article  Google Scholar 

  38. Grarup N, Sulem P, Sandholt CH, Thorleifsson G, Ahluwalia TS, Steinthorsdottir V et al. Genetic architecture of vitamin B12 and folate levels uncovered applying deeply sequenced large datasets. PLoS Genet 2013; 9: e1003530.

    Article  CAS  Google Scholar 

  39. Burgess S, Thompson SG . Use of allele scores as instrumental variables for Mendelian randomization. Int J Epidemiol 2013; 42: 1134–1144.

    Article  Google Scholar 

  40. Husemoen LL, Thomsen TF, Fenger M, Jorgensen HL, Jorgensen T . Contribution of thermolabile methylenetetrahydrofolate reductase variant to total plasma homocysteine levels in healthy men and women. Inter99 (2). Genet Epidemiol 2003; 24: 322–330.

    Article  Google Scholar 

  41. Forman JP, Rimm EB, Stampfer MJ, Curhan GC . Folate intake and the risk of incident hypertension among US women. JAMA 2005; 293: 320–329.

    Article  CAS  Google Scholar 

  42. Xun P, Liu K, Loria CM, Bujnowski D, Shikany JM, Schreiner PJ et al. Folate intake and incidence of hypertension among American young adults: a 20-y follow-up study. Am J Clin Nutr 2012; 95: 1023–1030.

    Article  CAS  Google Scholar 

  43. Cagnacci A, Cannoletta M, Volpe A . High-dose short-term folate administration modifies ambulatory blood pressure in postmenopausal women. A placebo-controlled study. Eur J Clin Nutr 2009; 63: 1266–1268.

    Article  CAS  Google Scholar 

  44. Mangoni AA, Sherwood RA, Swift CG, Jackson SH . Folic acid enhances endothelial function and reduces blood pressure in smokers: a randomized controlled trial. J Intern Med 2002; 252: 497–503.

    Article  CAS  Google Scholar 

  45. van Dijk RA, Rauwerda JA, Steyn M, Twisk JW, Stehouwer CD . Long-term homocysteine-lowering treatment with folic acid plus pyridoxine is associated with decreased blood pressure but not with improved brachial artery endothelium-dependent vasodilation or carotid artery stiffness: a 2-year, randomized, placebo-controlled trial. Arterioscler Thromb Vasc Biol 2001; 21: 2072–2079.

    Article  CAS  Google Scholar 

  46. Wang L, Li H, Zhou Y, Jin L, Liu J . Low-dose B vitamins supplementation ameliorates cardiovascular risk: a double-blind randomized controlled trial in healthy Chinese elderly. Eur J Nutr 2015; 54: 455–464.

    Article  CAS  Google Scholar 

  47. Villa P, Perri C, Suriano R, Cucinelli F, Panunzi S, Ranieri M et al. L-folic acid supplementation in healthy postmenopausal women: effect on homocysteine and glycolipid metabolism. J Clin Endocrinol Metab 2005; 90: 4622–4629.

    Article  CAS  Google Scholar 

  48. Paradisi G, Cucinelli F, Mele MC, Barini A, Lanzone A, Caruso A . Endothelial function in post-menopausal women: effect of folic acid supplementation. Hum Reprod 2004; 19: 1031–1035.

    Article  CAS  Google Scholar 

  49. Tran-Dinh A, Diallo D, Delbosc S, Varela-Perez LM, Dang QB, Lapergue B et al. HDL and endothelial protection. Br J Pharmacol 2013; 169: 493–511.

    Article  CAS  Google Scholar 

  50. Ng DS, Wong NC, Hegele RA . HDL—is it too big to fail? Nat Rev Endocrinol 2013; 9: 308–312.

    Article  CAS  Google Scholar 

  51. Boden WE, Probstfield JL, Anderson T, Chaitman BR, Desvignes-Nickens P, Koprowicz K et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 2011; 365: 2255–2267.

    Article  Google Scholar 

  52. Ginsberg HN, Elam MB, Lovato LC, Crouse JR III, Leiter LA, Linz P et al. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010; 362: 1563–1574.

    Article  Google Scholar 

  53. Voight BF, Peloso GM, Orho-Melander M, Frikke-Schmidt R, Barbalic M, Jensen MK et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet 2012; 380: 572–580.

    Article  CAS  Google Scholar 

  54. Davey SG, Ebrahim S . 'Mendelian randomization': can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol 2003; 32: 1–22.

    Article  Google Scholar 

Download references

Acknowledgements

The present study was supported by grants from the Health Insurance Foundation (grant No. 2010 B 131), the Danish Agency for Science Technology and Innovation (grant No. 2101-06-0065), the Lundbeck Foundation Center for Applied Medical Genomics in Personalised Disease Prediction, Prevention and Care (LuCamp; http://www.lucamp.org) and The Novo Nordisk Foundation Center for Basic Metabolic Research, which is an independent research centre at the University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation (http://www.metabol.ku.dk). Tea Skaaby was supported by a grant from the Lundbeck Foundation (Grant number R165-2013-15410).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L L N Husemoen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on European Journal of Clinical Nutrition website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Husemoen, L., Skaaby, T., Thuesen, B. et al. Mendelian randomisation study of the associations of vitamin B12 and folate genetic risk scores with blood pressure and fasting serum lipid levels in three Danish population-based studies. Eur J Clin Nutr 70, 613–619 (2016). https://doi.org/10.1038/ejcn.2016.5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2016.5

This article is cited by

Search

Quick links