Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Vitamins and plant ingredients

Effects of selenium on coronary artery disease, type 2 diabetes and their risk factors: a Mendelian randomization study

Abstract

Background

The impact of selenium on coronary artery disease (CAD) and type 2 diabetes (T2D) remains unclear with inconsistent results from observational studies and randomized controlled trials. We used Mendelian randomization to obtain unconfounded estimates of the effect of selenium on CAD, T2D, lipids and glycemic traits.

Methods

We applied genetic variants strongly (P < 5 × 10−8) associated with blood and toenail selenium to publicly available summary statistics from large consortia genome-wide association studies of CAD (76,014 cases and 264,785 non-cases), T2D (74,124 cases and 824,006 controls), lipids and glycemic traits. Variant specific Wald estimates were combined using inverse variance weighting, with several sensitivity analyses.

Results

Genetically predicted selenium was associated with higher T2D (OR 1.27, 95% CI 1.07–1.50, P = 0.006). There was little evidence of an association with CAD. Genetically predicted selenium was associated with lower low-density lipoprotein (LDL) cholesterol, lower high-density lipoprotein (HDL) cholesterol, higher fasting insulin and higher homeostasis model assessment of insulin resistance. These results were not robust to all sensitivity analyses. No associations with triglycerides, fasting glucose or homeostasis model assessment of β-cell function were evident.

Conclusions

Our study suggests selenium may increase the risk of T2D, possibly through insulin resistance rather than pancreatic beta cell function, but may reduce lipids. We found little evidence of an association with CAD, although an inverse association cannot be definitively excluded. The effect of selenium on these outcomes warrants further investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rayman MP. Selenium and human health. Lancet. 2012;379:1256–68. https://doi.org/10.1016/S0140-6736(11)61452-9

    Article  CAS  PubMed  Google Scholar 

  2. Rees K, Hartley L, Day C, Flowers N, Clarke A, Stranges S. Selenium supplementation for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2013. https://doi.org/10.1002/14651858.CD009671.pub2.

  3. Vinceti M, Filippini T, Del Giovane C, Dennert G, Zwahlen M, Brinkman M et al. Selenium for preventing cancer. Cochrane Database Syst Rev. 2018. https://doi.org/10.1002/14651858.CD005195.pub4.

  4. Ju W, Li X, Li Z, Wu GR, Fu XF, Yang XM, et al. The effect of selenium supplementation on coronary heart disease: A systematic review and meta-analysis of randomized controlled trials. J Trace Elem Med Biol. 2017;44:8–16. https://doi.org/10.1016/j.jtemb.2017.04.009

    Article  CAS  PubMed  Google Scholar 

  5. Zhang X, Liu C, Guo J, Song Y. Selenium status and cardiovascular diseases: meta-analysis of prospective observational studies and randomized controlled trials. Eur J Clin Nutr. 2015;70:162–9.

  6. Flores-Mateo G, Nanas-Acien A, Pastor-Barriuso R, Guallar E. Selenium and coronary heart disease: a meta-analysis. Am J Clin Nutr. 2006;84:762–73. https://doi.org/10.1093/ajcn/84.4.762

    Article  CAS  PubMed  Google Scholar 

  7. Vinceti M, Filippini T, Rothman K. Selenium exposure and the risk of type 2 diabetes: a systematic review and meta-analysis. Eur J Epidemiol. 2018;33:789–810. https://doi.org/10.1007/s10654-018-0422-8

    Article  PubMed  Google Scholar 

  8. Kim J, Chung HS, Choi M-K, Roh YK, Yoo HJ, Park JH, et al. Association between serum selenium level and the presence of diabetes mellitus: a meta-analysis of observational studies. Diabetes Metab J. 2019;43:e1.

    Article  Google Scholar 

  9. Kohler LN, Foote J, Kelley CP, Florea A, Shelly C, Chow HHS, et al. Selenium and type 2 diabetes: systematic review. Nutrients. 2018;10:1924. https://doi.org/10.3390/nu10121924

    Article  CAS  PubMed Central  Google Scholar 

  10. Wang X-L, Yang T-B, Wei J, Lei G-H, Zeng C. Association between serum selenium level and type 2 diabetes mellitus: a non-linear dose–response meta-analysis of observational studies. Nutr J. 2016;15:48. https://doi.org/10.1186/s12937-016-0169-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lawlor DA, Harbord RM, Sterne JAC, Timpson N, Davey Smith G. Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med. 2008;27:1133–63. https://doi.org/10.1002/sim.3034

    Article  PubMed  Google Scholar 

  12. Yarmolinsky J, Bonilla C, Haycock PC, Langdon RJQ, Lotta LA, Langenberg C, et al. Circulating Selenium and Prostate Cancer Risk: A Mendelian Randomization Analysis. JNCI: J Natl Cancer Inst. 2018;110:1035–8. https://doi.org/10.17863/CAM.27700

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cornelis MC, Fornage M, Foy M, Xun P, Gladyshev VN, Morris S, et al. Genome-wide association study of selenium concentrations. Hum Mol Genet. 2015;24:1469–77. https://doi.org/10.1093/hmg/ddu546

    Article  CAS  PubMed  Google Scholar 

  14. Evans DM, Zhu G, Dy V, Heath AC, Madden PAF, Kemp JP, et al. Genome-wide association study identifies loci affecting blood copper, selenium and zinc. Hum Mol Genet. 2013;22:3998–4006. https://doi.org/10.1093/hmg/ddt239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nelson CP, Goel A, Butterworth AS, Kanoni S, Webb TR, Marouli E, et al. Association analyses based on false discovery rate implicate new loci for coronary artery disease. Nat Genet. 2017;49:1385–91.

  16. Nikpay M, Goel A, Won H-H, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1000 genomes–based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015;47:1121–30. https://doi.org/10.1038/ng.3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Willer C, Schmidt E, Sengupta S, Peloso G, Gustafsson S, Kanoni S, et al. Discovery and refinement of loci associated with lipid levels. Nat Genet. 2013;45:1274–83. https://doi.org/10.1038/ng.2797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mahajan A, Taliun D, Thurner M, Robertson NR, Torres JM, Rayner NW, et al. Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet. 2018;50:1505–13. https://doi.org/10.1038/s41588-018-0241-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wheeler E, Leong A, Liu CT, Hivert MF, Strawbridge RJ, Podmore C, et al. Impact of common genetic determinants of Hemoglobin A1c on type 2 diabetes risk and diagnosis in ancestrally diverse populations: A transethnic genome-wide meta-analysis. PLoS Med. 2017;14:e1002383. https://doi.org/10.17863/CAM.13618

    Article  PubMed  PubMed Central  Google Scholar 

  20. Manning AK, Hivert M-F, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H et al. A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance. Nat Genet. 2012;44:659.

  21. Dupuis J, Langenberg C, Prokopenko I, Saxena R, Soranzo N, Jackson AU, et al. New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nat Genet. 2010;42:105–16.

  22. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base platform supports systematic causal inference across the human phenome. eLife. 2018;7:e34408 https://doi.org/10.7554/eLife.34408

    Article  PubMed  PubMed Central  Google Scholar 

  23. Burgess S, Zuber V, Valdes-Marquez E, Sun BB, Hopewell JC. Mendelian randomization with fine-mapped genetic data: choosing from large numbers of correlated instrumental variables. Genet Epidemiol. 2017;41:714–25. https://doi.org/10.1002/gepi.22077

    Article  PubMed  PubMed Central  Google Scholar 

  24. Greco MFD, Minelli C, Sheehan NA, Thompson JR. Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome. Stat Med. 2015;34:2926–40. https://doi.org/10.1002/sim.6522

    Article  Google Scholar 

  25. Burgess S, Thompson S. Interpreting findings from Mendelian randomization using the MR-Egger method. Eur J Epidemiol. 2017;32:377–89. https://doi.org/10.1007/s10654-017-0255-x

    Article  PubMed  PubMed Central  Google Scholar 

  26. Burgess S, Thompson SG. Bias in causal estimates from Mendelian randomization studies with weak instruments. Stat Med. 2011;30:1312–23. https://doi.org/10.1002/sim.4197

    Article  PubMed  Google Scholar 

  27. Freeman G, Cowling BJ, Schooling CM. Power and sample size calculations for Mendelian randomization studies using one genetic instrument. Int J Epidemiol. 2013;42:1157–63. https://doi.org/10.1093/ije/dyt110

    Article  PubMed  Google Scholar 

  28. Rayman MP, Stranges S. Epidemiology of selenium and type 2 diabetes: Can we make sense of it? Free Radic Biol Med. 2013;65:1557–64. https://doi.org/10.1016/j.freeradbiomed.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  29. Slotnick MJ, Nriagu JO. Validity of human nails as a biomarker of arsenic and selenium exposure: a review. Environ Res. 2006;102:125–39. https://doi.org/10.1016/j.envres.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  30. Vinceti M, Filippini T, Wise LA. Environmental Selenium and Human Health: an Update. Curr Environ Health Rep. 2018;5:464–85. https://doi.org/10.1007/s40572-018-0213-0. e-pub ahead of print 2018/10/04

    Article  PubMed  Google Scholar 

  31. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1. https://doi.org/10.1093/bioinformatics/btq340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent estimation in mendelian randomization with some invalid instruments using a weighted median estimator. Genet Epidemiol. 2016;40:304–14. https://doi.org/10.1002/gepi.21965

    Article  PubMed  PubMed Central  Google Scholar 

  33. Verbanck M, Chen C-Y, Neale B, Do R. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases. Nat Genet. 2018;50:693–8. https://doi.org/10.1038/s41588-018-0099-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.

  35. Xiang S, Dai Z, Man C, Fan Y. Circulating selenium and cardiovascular or all-cause mortality in the general population: a meta-analysis. Biol Trace Elem Res. 2020;195:55–62. https://doi.org/10.1007/s12011-019-01847-8

    Article  CAS  PubMed  Google Scholar 

  36. Rayman MP, Stranges S, Griffin BA, Pastor-Barriuso R, Guallar E. Effect of supplementation with high-selenium yeast on plasma lipids: a randomized trial. Ann Intern Med. 2011;154:656–65. https://doi.org/10.7326/0003-4819-154-10-201105170-00005

    Article  PubMed  Google Scholar 

  37. Jacobs ET, Lance P, Mandarino LJ, Ellis NA, Chow HHS, Foote J, et al. Selenium supplementation and insulin resistance in a randomized, clinical trial. BMJ Open Diabetes Res Care. 2019;7:e000613. https://doi.org/10.1136/bmjdrc-2018-000613

    Article  PubMed  PubMed Central  Google Scholar 

  38. Junxi L, Shiu Lun Au Y, Shi Lin L, Gabriel ML, Schooling CM. Liver enzymes and risk of ischemic heart disease and type 2 diabetes mellitus: a Mendelian Randomization Study. Sci Rep. 2016;6:38813. https://doi.org/10.1038/srep38813

    Article  CAS  Google Scholar 

  39. Zhao J, Schooling C. Effect of linoleic acid on ischemic heart disease and its risk factors: a Mendelian randomization study. BMC Med. 2019;17:61. https://doi.org/10.1186/s12916-019-1293-x

    Article  PubMed  PubMed Central  Google Scholar 

  40. Sattar N, Taskinen M-R. Statins are diabetogenic – Myth or reality? Atherosclerosis. 2012;13:1–10. https://doi.org/10.1016/j.atherosclerosissup.2012.06.001

    Article  CAS  PubMed  Google Scholar 

  41. Fall T, Xie W, Poon W, Yaghootkar H, Mägi R, Knowles JW, et al. Using genetic variants to assess the relationship between circulating lipids and type 2 diabetes. Diabetes. 2015;64:2676–84. https://doi.org/10.2337/db14-1710

    Article  CAS  PubMed  Google Scholar 

  42. Swerdlow DI, Preiss D, Kuchenbaecker KB, Holmes MV, Engmann JEL, Shah T, et al. HMG-coenzyme a reductase inhibition, type 2 diabetes, and bodyweight: evidence from genetic analysis and randomised trials. Lancet. 2015;385:351–61. https://doi.org/10.1016/S0140-6736(14)61183-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Axsom K, Berger J, Schwartzbard A. Statins and diabetes: the good, the bad, and the unknown. Curr Atheroscler Rep. 2013;15:1–7. https://doi.org/10.1007/s11883-012-0299-z

    Article  CAS  Google Scholar 

  44. White J, Swerdlow DI, Preiss D, Fairhurst-Hunter Z, Keating BJ, Asselbergs FW, et al. Association of lipid fractions with risks for coronary artery disease and diabetes. JAMA Cardiol. 2016;1:692–9. https://doi.org/10.1001/jamacardio.2016.1884

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ference BA, Robinson JG, Brook RD, Catapano AL, Chapman MJ, Neff DR, et al. Variation in PCSK9 and HMGCR and risk of cardiovascular disease and diabetes. N. Engl J Med. 2016;375:2144–53. https://doi.org/10.1056/NEJMoa1604304

    Article  CAS  PubMed  Google Scholar 

  46. Lotta LA, Sharp SJ, Burgess S, Perry JRB, Stewart ID, Willems SM, et al. Association between low-density lipoprotein cholesterol–lowering genetic variants and risk of type 2 diabetes: a meta-analysis. JAMA. 2016;316:1383–91. https://doi.org/10.1001/jama.2016.14568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sabatine MS, Leiter LA, Wiviott SD, Giugliano RP, Deedwania P, De Ferrari GM, et al. Cardiovascular safety and efficacy of the PCSK9 inhibitor evolocumab in patients with and without diabetes and the effect of evolocumab on glycaemia and risk of new-onset diabetes: a prespecified analysis of the FOURIER randomised controlled trial. Lancet Diabetes Endocrinol. 2017;5:941–50. https://doi.org/10.1016/S2213-8587(17)30313-3

    Article  CAS  PubMed  Google Scholar 

  48. Wu H, Shang H, Wu J. Effect of ezetimibe on glycemic control: a systematic review and meta-analysis of randomized controlled trials. Endocrine. 2018;60:229–39. https://doi.org/10.1007/s12020-018-1541-4

    Article  CAS  PubMed  Google Scholar 

  49. Nassir F, Moundras C, Bayle D, Sérougne C, Gueux E, Rock E, et al. Effect of selenium deficiency on hepatic lipid and lipoprotein metabolism in the rat. Br J Nutr. 1997;78:493–500. https://doi.org/10.1079/BJN19970166

    Article  CAS  PubMed  Google Scholar 

  50. McClung JP, Roneker CA, Mu W, Lisk DJ, Langlais P, Liu F, et al. Development of insulin resistance and obesity in mice overexpressing cellular glutathione peroxidase. Proc Natl Acad Sci USA. 2004;101:8852–7. https://doi.org/10.1073/pnas.0308096101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Loh K, Deng H, Fukushima A, Cai X, Boivin B, Galic S, et al. Reactive oxygen species enhance insulin sensitivity. Cell Metab. 2009;10:260–72. https://doi.org/10.1016/j.cmet.2009.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Misu H, Takamura T, Takayama H, Hayashi H, Matsuzawa-Nagata N, Kurita S, et al. A liver-derived secretory protein, Selenoprotein P, causes insulin resistance. Cell Metab. 2010;12:483–95. https://doi.org/10.1016/j.cmet.2010.09.015

    Article  CAS  PubMed  Google Scholar 

  53. Huang T, Ren J, Huang J, Li D. Association of homocysteine with type 2 diabetes: a meta-analysis implementing Mendelian randomization approach. BMC Genom. 2013;14:867. https://doi.org/10.1186/1471-2164-14-867

    Article  CAS  Google Scholar 

  54. Zhao JV, Schooling CM. Homocysteine-reducing B vitamins and ischemic heart disease: a separate-sample Mendelian randomization analysis. Eur J Clin Nutr. 2017;71:267–73. https://doi.org/10.1038/ejcn.2016.246

    Article  CAS  PubMed  Google Scholar 

  55. Lopez PM, Subramanian SV, Schooling CM. Effect measure modification conceptualized using selection diagrams as mediation by mechanisms of varying population-level relevance. J Clin Epidemiol. 2019;113:123–8. https://doi.org/10.1016/j.jclinepi.2019.05.005

    Article  PubMed  Google Scholar 

  56. Staley J, Burgess S. Semiparametric methods for estimation of a nonlinear exposure-outcome relationship using instrumental variables with application to Mendelian randomization. 2017;41:341−52.

  57. Schooling CM, Yeung SL, Freeman G. Mendelian randomization estimates may be inflated. J Am Coll Cardiol. 2013;61:1931. https://doi.org/10.1016/j.jacc.2012.12.049

    Article  PubMed  Google Scholar 

  58. Jablonska E, Vinceti M. Selenium and human health: witnessing a copernican revolution? J Environ Sci Health, Part C. 2015;33:328–68. https://doi.org/10.1080/10590501.2015.1055163

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Data on coronary artery disease/myocardial infarction have been contributed by the CARDIoGRAMplusC4D and UK Biobank CardioMetabolic Consortium CHD working group who used the UK Biobank Resource (application number 9922). Data have been downloaded from www.CARDIOGRAMPLUSC4D.ORG. Data on diabetes have been contributed by DIAGRAM investigators and have been downloaded from http://www.diagram-consortium.org. Data on glycemic traits have been contributed by MAGIC investigators and have been downloaded from www.magicinvestigators.org.

Funding

The authors received no funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

AAR and CMS designed the study, analyzed the data, interpreted the results and had primary responsibility for the final content. AAR drafted the paper. CMS critically revised the paper. HSL reviewed and commented on the paper.

Corresponding author

Correspondence to C. Mary Schooling.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rath, A.A., Lam, H.S. & Schooling, C.M. Effects of selenium on coronary artery disease, type 2 diabetes and their risk factors: a Mendelian randomization study. Eur J Clin Nutr 75, 1668–1678 (2021). https://doi.org/10.1038/s41430-021-00882-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41430-021-00882-w

This article is cited by

Search

Quick links