Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Differential effects of walnuts vs almonds on improving metabolic and endocrine parameters in PCOS

Abstract

Background/Objectives:

Polycystic ovary syndrome (PCOS) is commonly associated with insulin resistance, dyslipidemia and increased inflammation, which all benefit from dietary intake of monounsaturated and n-3 polyunsaturated fatty acids (MUFA and n-3 PUFA). Our goal was to compare the effects of MUFA-rich almonds vs n-3/n-6 PUFA-rich walnuts on metabolic and endocrine parameters in PCOS.

Subjects/Methods:

Thirty-one PCOS patients randomly received either walnuts or almonds containing 31 g of total fat per day for 6 weeks. At the beginning and at the end, anthropometric parameters, fasting lipids, phospholipid-fatty acids, inflammatory markers, androgens, oral glucose tolerance tests (OGTT) and frequently sampled intravenous-GTT were obtained.

Results:

Weight remained stable. Within group, walnuts increased the n-3/n-6 essential PUFA in the diet and plasma phospholipids. Walnuts decreased low-density lipoprotein-cholesterol by 6% from 3.76±0.27 to 3.38±0.22 mmol/l (P=0.05) and apoprotein B by 11% from 0.72±0.04 to 0.64±0.05 g/l (P<0.03). Although almonds also reduced low-density lipoprotein-cholesterol by 10% and apoprotein B by 9%, these were not significant. Walnuts increased insulin response during OGTT by 26% (P<0.02). Both walnuts and almonds increased adiponectin (walnuts from 9.5±1.6 to 11.3±1.8 μg per 100 ml, P=0.0241; almonds from 10.1±1.5 to 12.2±1.4 μg/dl, P=0.0262). Walnuts decreased HgBA1 from 5.7±0.1 to 5.5±0.1% (P=0.0006) with significant intergroup difference from almonds (P=0.0470). Walnuts increased sex hormone-binding globulin from 38.3±4.1 to 43.1±4.3 nmol/l (P=0.0038) and almonds reduced free androgen index from 2.6±0.4 to 1.8±0.3 (P=0.0470).

Conclusion:

Nut intake exerted beneficial effects on plasma lipids and androgens in PCOS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

References

  • Abbate R, Gori AM, Martini F, Brunelli T, Filippini M, Francalanci I et al. (1996). n−3 PUFA supplementation, monocyte PCA expression and interleukin-6 production. Prostaglandins Leukot Essent Fatty Acids 54, 439–444.

    Article  CAS  Google Scholar 

  • Almario RU, Vonghavaravat V, Wong R, Kasim-Karakas SE (2001). Effects of walnut consumption on plasma fatty acids and lipoproteins in combined hyperlipidemia. Am J Clin Nutr 74, 72–79.

    Article  CAS  Google Scholar 

  • Arterburn LM, Hall EB, Oken H (2006). Distribution, interconversion, and dose response of n−3 fatty acids in humans. Am J Clin Nutr 83, 1467S–1476S.

    Article  CAS  Google Scholar 

  • Azziz R (2005). Diagnostic criteria for polycystic ovary syndrome: a reappraisal. Fertil steril 83, 1343–1346.

    Article  Google Scholar 

  • Banel DK, Hu FB (2009). Effects of walnut consumption on blood lipids and other cardiovascular risk factors: a meta-analysis and systematic review. Am J Clin Nutr 90, 56–63.

    Article  CAS  Google Scholar 

  • Baur LA, O’Connor J, Pan DA, Kriketos AD, Storlien LH (1998). The fatty acid composition of skeletal muscle membrane phospholipid: its relationship with the type of feeding and plasma glucose levels in young children. Metabolism 47, 106–112.

    Article  CAS  Google Scholar 

  • Berglund L, Lefevre M, Ginsberg HN, Kris-Etherton PM, Elmer PJ, Stewart PW et al. (2007). Comparison of monounsaturated fat with carbohydrates as a replacement for saturated fat in subjects with a high metabolic risk profile: studies in the fasting and postprandial states. Am J Clin Nutr 86, 1611–1620.

    Article  CAS  Google Scholar 

  • Bonnet F, Balkau B, Malecot JM, Picard P, Lange C, Fumeron F et al. (2009). Sex hormone-binding globulin predicts the incidence of hyperglycemia in women: interactions with adiponectin levels. Eur J Endocrinol 161, 81–85.

    Article  CAS  Google Scholar 

  • Calder PC (2001). Polyunsaturated fatty acids, inflammation, and immunity. Lipids 36, 1007–1024.

    Article  CAS  Google Scholar 

  • Dunaif A (2000). Citation for the 2000 Monsanto Clinical Investigator Award Lecture of The Endocrine Society to Dr William F Crowley. Endocr Rev 21, 449–450.

    CAS  PubMed  Google Scholar 

  • Dunaif A, Xia J, Book CB, Schenker E, Tang Z (1995). Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome. J Clin Invest 96, 801–810.

    Article  CAS  Google Scholar 

  • Ehrmann DA (2005). Polycystic ovary syndrome. N Engl J Med 352, 1223–1236.

    Article  CAS  Google Scholar 

  • Ehrmann DA, Liljenquist DR, Kasza K, Azziz R, Legro RS, Ghazzi MN (2006). Prevalence and predictors of the metabolic syndrome in women with polycystic ovary syndrome. J Clin Endocrinol Metab 91, 48–53.

    Article  CAS  Google Scholar 

  • Feldman EB (2002). The scientific evidence for a beneficial health relationship between walnuts and coronary heart disease. J Nutr 132, 1062S–1101S.

    Article  Google Scholar 

  • Finnegan YE, Minihane AM, Leigh-Firbank EC, Kew S, Meijer GW, Muggli R et al. (2003). Plant- and marine-derived n−3 polyunsaturated fatty acids have differential effects on fasting and postprandial blood lipid concentrations and on the susceptibility of LDL to oxidative modification in moderately hyperlipidemic subjects. Am J Clin Nutr 77, 783–795.

    Article  CAS  Google Scholar 

  • Glueck CJ, Papanna R, Wang P, Goldenberg N, Sieve-Smith L (2003). Incidence and treatment of metabolic syndrome in newly referred women with confirmed polycystic ovarian syndrome. Metabolism 52, 908–915.

    Article  CAS  Google Scholar 

  • Griel AE, Kris-Etherton PM (2006). Tree nuts and the lipid profile: a review of clinical studies. Br J Nutr 96 (Suppl 2), S68–S78.

    Article  CAS  Google Scholar 

  • Hamilton-Fairley D, White D, Griffiths M, Anyaoku V, Koistinen R, Seppala M et al. (1995). Diurnal variation of sex hormone binding globulin and insulin-like growth factor binding protein-1 in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 43, 159–165.

    Article  CAS  Google Scholar 

  • Havel PJ (2002). Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol 13, 51–59.

    Article  CAS  Google Scholar 

  • Karakas SE, Kim K, Duleba AJ (2010). Determinants of impaired fasting glucose versus glucose intolerance in polycystic ovary syndrome. Diabetes Care 33, 887–893.

    Article  Google Scholar 

  • Kasim-Karakas SE, Almario RU, Gregory L, Wong R, Todd H, Lasley BL (2004). Metabolic and endocrine effects of a polyunsaturated fatty acid-rich diet in polycystic ovary syndrome. J Clin Endocrinol Metab 89, 615–620.

    Article  CAS  Google Scholar 

  • Kopecky J, Rossmeisl M, Flachs P, Kuda O, Brauner P, Jilkova Z et al. (2009). n−3 PUFA: bioavailability and modulation of adipose tissue function. Proc Nutr Soc 68, 361–369.

    Article  CAS  Google Scholar 

  • Korotkova M, Gabrielsson B, Lonn M, Hanson LA, Strandvik B (2002). Leptin levels in rat offspring are modified by the ratio of linoleic to alpha-linolenic acid in the maternal diet. J Lipid Res 43, 1743–1749.

    Article  CAS  Google Scholar 

  • Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ et al. (2009). Beta-amyloid oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. J Neurosci 29, 9078–9089.

    Article  CAS  Google Scholar 

  • Ma Y, Njike VY, Millet J, Dutta S, Doughty K, Treu JA et al. (2010). Effects of walnut consumption on endothelial function in type 2 diabetic subjects: a randomized controlled crossover trial. Diabetes Care 33, 227–232.

    Article  CAS  Google Scholar 

  • Marshall LA, Johnston PV (1982). Modulation of tissue prostaglandin synthesizing capacity by increased ratios of dietary alpha-linolenic acid to linoleic acid. Lipids 17, 905–913.

    Article  CAS  Google Scholar 

  • Martin de Santa Olalla L, Sanchez Muniz FJ, Vaquero MP (2009). N−3 fatty acids in glucose metabolism and insulin sensitivity. Nutr Hosp 24, 113–127.

    CAS  PubMed  Google Scholar 

  • Pareja A, Tinahones FJ, Soriguer FJ, Monzon A, Esteva de Antonio I, Garcia-Arnes J et al. (1997). Unsaturated fatty acids alter the insulin secretion response of the islets of Langerhans in vitro. Diabetes Res Clin Pract 38, 143–149.

    Article  CAS  Google Scholar 

  • Perez de Heredia F, Sanchez J, Priego T, Larque E, del Puy Portillo M, Palou A et al. (2009). Adiponectin is associated with serum and adipose tissue fatty acid composition in rats. J Endocrinol Invest 32, 659–665.

    Article  CAS  Google Scholar 

  • Peyron-Caso E, Taverna M, Guerre-Millo M, Veronese A, Pacher N, Slama G et al. (2002). Dietary (n−3) polyunsaturated fatty acids up-regulate plasma leptin in insulin-resistant rats. J Nutr 132, 2235–2240.

    Article  CAS  Google Scholar 

  • Reseland JE, Haugen F, Hollung K, Solvoll K, Halvorsen B, Brude IR et al. (2001). Reduction of leptin gene expression by dietary polyunsaturated fatty acids. J Lipid Res 42, 743–750.

    CAS  PubMed  Google Scholar 

  • Sacks FM, Campos H (2006). Polyunsaturated fatty acids, inflammation, and cardiovascular disease: time to widen our view of the mechanisms. J Clin Endocrinol Metab 91, 398–400.

    Article  CAS  Google Scholar 

  • Schaefer EJ, Lichtenstein AH, Lamon-Fava S, McNamara JR, Schaefer MM, Rasmussen H et al. (1995). Body weight and low-density lipoprotein cholesterol changes after consumption of a low-fat ad libitum diet. JAMA 274, 1450–1455.

    Article  CAS  Google Scholar 

  • Sekine S, Sasanuki S, Murano Y, Aoyama T, Takeuchi H (2008). Alpha-linolenic acid-rich flaxseed oil ingestion increases plasma adiponectin level in rats. Int J Vitam Nutr Res 78, 223–229.

    Article  CAS  Google Scholar 

  • Simopoulos AP, Leaf A, Salem Jr N (2000). Workshop statement on the essentiality of and recommended dietary intakes for Omega-6 and Omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids 63, 119–121.

    Article  CAS  Google Scholar 

  • Spranger J, Mohlig M, Wegewitz U, Ristow M, Pfeiffer AF, Schill T et al. (2004). Adiponectin is independently associated with insulin sensitivity in women with polycystic ovary syndrome. Clin Endocrinol (Oxf) 61, 738–746.

    Article  CAS  Google Scholar 

  • Stefan N, Stumvoll M (2002). Adiponectin--its role in metabolism and beyond. Horm Metab Res 34, 469–474.

    Article  CAS  Google Scholar 

  • Takahashi Y, Ide T (2000). Dietary n−3 fatty acids affect mRNA level of brown adipose tissue uncoupling protein 1, and white adipose tissue leptin and glucose transporter 4 in the rat. Br J Nutr 84, 175–184.

    CAS  PubMed  Google Scholar 

  • Tapsell LC, Batterham MJ, Teuss G, Tan SY, Dalton S, Quick CJ et al. (2009). Long-term effects of increased dietary polyunsaturated fat from walnuts on metabolic parameters in type II diabetes. Eur J Clin Nutr 63, 1008–1015.

    Article  CAS  Google Scholar 

  • Vessby B (2000). Dietary fat and insulin action in humans. Br J nutr 83 (Suppl 1), S91–S96.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Center for Complementary and Alternative Medicine (R21 AT002280) and the ALSAM Foundation to Dr SE Karakas. The clinical studies were partially supported by the UC Davis Clinical and Translational Science Center grant (RR 024146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S E Karakas.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalgaonkar, S., Almario, R., Gurusinghe, D. et al. Differential effects of walnuts vs almonds on improving metabolic and endocrine parameters in PCOS. Eur J Clin Nutr 65, 386–393 (2011). https://doi.org/10.1038/ejcn.2010.266

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ejcn.2010.266

Keywords

This article is cited by

Search

Quick links