Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Mechanism and relevance of EWS/FLI-mediated transcriptional repression in Ewing sarcoma

A Corrigendum to this article was published on 27 June 2016

Abstract

Ewing sarcoma provides an important model for transcription-factor-mediated oncogenic transformation because of its reliance on the ETS-type fusion oncoprotein EWS/FLI. EWS/FLI functions as a transcriptional activator and transcriptional activation is required for its oncogenic activity. Here, we demonstrate that a previously less-well characterized transcriptional repressive function of the EWS/FLI fusion is also required for the transformed phenotype of Ewing sarcoma. Through comparison of EWS/FLI transcriptional profiling and genome-wide localization data, we define the complement of EWS/FLI direct downregulated target genes. We demonstrate that LOX is a previously undescribed EWS/FLI-repressed target that inhibits the transformed phenotype of Ewing sarcoma cells. Mechanistic studies demonstrate that the NuRD co-repressor complex interacts with EWS/FLI, and that its associated histone deacetylase and LSD1 activities contribute to the repressive function. Taken together, these data reveal a previously unknown molecular function for EWS/FLI, demonstrate a more highly coordinated oncogenic transcriptional hierarchy mediated by EWS/FLI than previously suspected, and implicate a new paradigm for therapeutic intervention aimed at controlling NuRD activity in Ewing sarcoma tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M et al. Gene fusion with an ETS DNA-binding domain caused by chromosome translocation in human tumours. Nature 1992; 359: 162–165.

    Article  CAS  PubMed  Google Scholar 

  2. May WA, Lessnick SL, Braun BS, Klemsz M, Lewis BC, Lunsford LB et al. The Ewing's sarcoma EWS/FLI-1 fusion gene encodes a more potent transcriptional activator and is a more powerful transforming gene than FLI-1. Mol Cell Biol 1993; 13: 7393–7398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Seth A, Watson DK . ETS transcription factors and their emerging roles in human cancer. Eur J Cancer 2005; 41: 2462–2478.

    Article  CAS  PubMed  Google Scholar 

  4. Petermann R, Mossier BM, Aryee DN, Khazak V, Golemis EA, Kovar H . Oncogenic EWS-Fli1 interacts with hsRPB7, a subunit of human RNA polymerase II. Oncogene 1998; 17: 603–610.

    Article  CAS  PubMed  Google Scholar 

  5. Ramakrishnan R, Fujimura Y, Zou JP, Liu F, Lee L, Rao VN et al. Role of protein-protein interactions in the antiapoptotic function of EWS-Fli-1. Oncogene 2004; 23: 7087–7094.

    Article  CAS  PubMed  Google Scholar 

  6. Lessnick SL, Braun BS, Denny CT, May WA . Multiple domains mediate transformation by the Ewing's sarcoma EWS/FLI- 1 fusion gene. Oncogene 1995; 10: 423–431.

    CAS  PubMed  Google Scholar 

  7. Smith R, Owen LA, Trem DJ, Wong JS, Whangbo JS, Golub TR et al. Expression profiling of EWS/FLI identifies NKX2.2 as a critical target gene in Ewing's sarcoma. Cancer Cell 2006; 9: 405–416.

    Article  CAS  PubMed  Google Scholar 

  8. Prieur A, Tirode F, Cohen P, Delattre O . EWS/FLI-1 silencing and gene profiling of Ewing cells reveal downstream oncogenic pathways and a crucial role for repression of insulin-like growth factor binding protein 3. Mol Cell Biol 2004; 24: 7275–7283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Owen LA, Kowalewski AA, Lessnick SL . EWS/FLI mediates transcriptional repression via NKX2.2 during oncogenic transformation in Ewing's sarcoma. PLoS ONE 2008; 3: e1965.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kinsey M, Smith R, Iyer AK, McCabe ER, Lessnick SL . EWS/FLI and its downstream target NR0B1 interact directly to modulate transcription and oncogenesis in Ewing's sarcoma. Cancer Res 2009; 69: 9047–9055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Hahm KB, Cho K, Lee C, Im YH, Chang J, Choi SG et al. Repression of the gene encoding the TGF-beta type II receptor is a major target of the EWS-FLI1 oncoprotein. Nat Genet 1999; 23: 222–227.

    Article  CAS  PubMed  Google Scholar 

  12. Gangwal K, Sankar S, Hollenhorst PC, Kinsey M, Haroldsen SC, Shah AA et al. Microsatellites as EWS/FLI response elements in Ewing's sarcoma. Proc Natl Acad Sci USA 2008; 105: 10149–10154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schaefer KL, Eisenacher M, Braun Y, Brachwitz K, Wai DH, Dirksen U et al. Microarray analysis of Ewing's sarcoma family of tumours reveals characteristic gene expression signatures associated with metastasis and resistance to chemotherapy. Eur J Cancer 2008; 44: 699–709.

    Article  CAS  PubMed  Google Scholar 

  14. Kauer M, Ban J, Kofler R, Walker B, Davis S, Meltzer P et al. A molecular function map of Ewing's sarcoma. PLoS ONE 2009; 4: e5415.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bailly RA, Bosselut R, Zucman J, Cormier F, Delattre O, Roussel M et al. DNA-binding and transcriptional activation properties of the EWS-FLI-1 fusion protein resulting from the t(11;22) translocation in Ewing sarcoma. Mol Cell Biol 1994; 14: 3230–3241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arvand A, Welford SM, Teitell MA, Denny CT . The COOH-terminal domain of FLI-1 is necessary for full tumorigenesis and transcriptional modulation by EWS/FLI-1. Cancer Res 2001; 61: 5311–5317.

    CAS  PubMed  Google Scholar 

  17. May WA, Gishizky ML, Lessnick SL, Lunsford LB, Lewis BC, Delattre O et al. Ewing sarcoma 11;22 translocation produces a chimeric transcription factor that requires the DNA-binding domain encoded by FLI1 for transformation. Proc Natl Acad Sci USA 1993; 90: 5752–5756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Braunreiter CL, Hancock JD, Coffin CM, Boucher KM, Lessnick SL . Expression of EWS-ETS fusions in NIH3T3 cells reveals significant differences to Ewing's sarcoma. Cell Cycle 2006; 5: 2753–2759.

    Article  CAS  PubMed  Google Scholar 

  19. Gangwal K, Lessnick SL . Microsatellites are EWS/FLI response elements: genomic "junk" is EWS/FLI's treasure. Cell Cycle 2008; 7: 3127–3132.

    Article  CAS  PubMed  Google Scholar 

  20. Hancock JD, Lessnick SL . A transcriptional profiling meta-analysis reveals a core EWS-FLI gene expression signature. Cell Cycle 2008; 7: 250–256.

    Article  CAS  PubMed  Google Scholar 

  21. Owen LA, Lessnick SL . Identification of target genes in their native cellular context: an analysis of EWS/FLI in Ewing's Sarcoma. Cell Cycle 2006; 5: 2049–2053.

    Article  CAS  PubMed  Google Scholar 

  22. Perissi V, Jepsen K, Glass CK, Rosenfeld MG . Deconstructing repression: evolving models of co-repressor action. Nat Rev Genet 2010; 11: 109–123.

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Zhang H, Chen Y, Sun Y, Yang F, Yu W et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 2009; 138: 660–672.

    Article  CAS  PubMed  Google Scholar 

  24. Hollenhorst PC, Ferris MW, Hull MA, Chae H, Kim S, Graves BJ . Oncogenic ETS proteins mimic activated RAS/MAPK signaling in prostate cells. Genes Dev 2011; 25: 2147–2157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Barker HE, Cox TR, Erler JT . The rationale for targeting the LOX family in cancer. Nat Rev Cancer 2012; 12: 540–552.

    Article  CAS  PubMed  Google Scholar 

  26. Shukla N, Ameur N, Yilmaz I, Nafa K, Lau CY, Marchetti A et al. Oncogene mutation profiling of pediatric solid tumors reveals significant subsets of embryonal rhabdomyosarcoma and neuroblastoma with mutated genes in growth signaling pathways. Clin Cancer Res 2012; 18: 748–757.

    Article  CAS  PubMed  Google Scholar 

  27. Hollenhorst PC, Shah AA, Hopkins C, Graves BJ . Genome-wide analyses reveal properties of redundant and specific promoter occupancy within the ETS gene family. Genes Dev 2007; 21: 1882–1894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jaboin J, Wild J, Hamidi H, Khanna C, Kim CJ, Robey R et al. MS-27-275, an inhibitor of histone deacetylase, has marked in vitro and in vivo antitumor activity against pediatric solid tumors. Cancer Res 2002; 62: 6108–6115.

    CAS  PubMed  Google Scholar 

  29. Keshelava N, Houghton PJ, Morton CL, Lock RB, Carol H, Keir ST et al. Initial testing (stage 1) of vorinostat (SAHA) by the pediatric preclinical testing program. Pediatr Blood Cancer 2009; 53: 505–508.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bennani-Baiti IM, Machado I, Llombart-Bosch A, Kovar H . Lysine-specific demethylase 1 (LSD1/KDM1A/AOF2/BHC110) is expressed and is an epigenetic drug target in chondrosarcoma, Ewing's sarcoma, osteosarcoma, and rhabdomyosarcoma. Hum Pathol 2012; 43: 1300–1307.

    Article  CAS  PubMed  Google Scholar 

  31. Lessnick SL, Dacwag CS, Golub TR . The Ewing's sarcoma oncoprotein EWS/FLI induces a p53-dependent growth arrest in primary human fibroblasts. Cancer Cell 2002; 1: 393–401.

    Article  CAS  PubMed  Google Scholar 

  32. Kinsey M, Smith R, Lessnick SL . NR0B1 is required for the oncogenic phenotype mediated by EWS/FLI in Ewing's Sarcoma. Mol Cancer Res 2006; 4: 851–859.

    Article  CAS  PubMed  Google Scholar 

  33. Kim J, Cantor AB, Orkin SH, Wang J . Use of in vivo biotinylation to study protein-protein and protein-DNA interactions in mouse embryonic stem cells. Nat Protoc 2009; 4: 506–517.

    Article  CAS  PubMed  Google Scholar 

  34. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 2005; 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Cairns, Engel and Bhaskara for discussions and critical reading of this manuscript and members of the Lessnick laboratory, and Drs Denny and Ayer, for discussions and reagents. SS acknowledges support from the HHMI Med into Grad program at the University of Utah (U2M2G). This work was supported by NIH/NCI Grants R01 CA140394 (to SLL) and P30 CA042014 (to Huntsman Cancer Institute) and funding from Imaging Diagnostics and Therapeutics Program at Huntsman Cancer Institute (to Sunil Sharma).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S L Lessnick.

Ethics declarations

Competing interests

Sorna Venkataswamy, Hariprasad Vankayalapati, Steven L Warner, Sunil Sharma and David J Bearss filed United States patent application 61/523 801 on 08/15/2011: Substituted (E)-N'-(1-Phenylethylidene)Benzohydrazide Analogs as Histone Demethylase Inhibitors.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sankar, S., Bell, R., Stephens, B. et al. Mechanism and relevance of EWS/FLI-mediated transcriptional repression in Ewing sarcoma. Oncogene 32, 5089–5100 (2013). https://doi.org/10.1038/onc.2012.525

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.525

Keywords

This article is cited by

Search

Quick links