Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The DNA/RNA helicase DHX9 orchestrates the KDM2B-mediated transcriptional regulation of YAP1 in Ewing sarcoma

Abstract

Ewing sarcomas (ES) are aggressive paediatric tumours of bone and soft tissues. Resistance to chemotherapy and high propensity to metastasize remain the main causes of treatment failure. Thus, identifying novel targets for alternative therapeutic approaches is urgently needed. DNA/RNA helicases are emerging as crucial regulators of many cellular processes often deregulated in cancer. Among them, DHX9 is up-regulated in ES and collaborates with EWS-FLI1 in ES transformation. We report that DHX9 silencing profoundly impacts on the oncogenic properties of ES cells. Transcriptome profiling combined to bioinformatic analyses disclosed a gene signature commonly regulated by DHX9 and the Lysine Demethylase KDM2B, with the Hippo pathway regulator YAP1 as a prominent target. Mechanistically, we found that DHX9 enhances H3K9 chromatin demethylation by KDM2B and favours RNA Polymerase II recruitment, thus promoting YAP1 expression. Conversely, EWS-FLI1 binding to the promoter represses YAP1 expression. These findings identify the DHX9/KDM2B complex as a new druggable target to counteract ES malignancy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Enhanced DHX9 expression is associated with the tumorigenic phenotype.
Fig. 2: Downregulation of DHX9 expression decreases tumour growth in vivo.
Fig. 3: DHX9 controls the expression of tumorigenic-related genes in ES cells.
Fig. 4: DHX9 regulated genes significantly overlap with KDM2B signature in ES.
Fig. 5: YAP1 expression is modulated by DHX9 and KDM2B in ES cells.
Fig. 6: DHX9 and KDM2B form a molecular complex to regulate YAP1 expression.
Fig. 7: EWS-FLI1 acts as a transcriptional repressor of YAP1 expression.
Fig. 8: DHX9 knockdown impacts YAP1 expression in vivo.

Similar content being viewed by others

Data availability

The data generated in this study are publicly available in Gene Expression Omnibus (GEO) at GSE214257.

References

  1. Grünewald TG, Alonso M, Avnet S, Banito A, Burdach S, Cidre-Aranaz F, et al. Sarcoma treatment in the era of molecular medicine. EMBO Mol Med. 2020;12:e11131.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Grünewald TGP, Cidre-Aranaz F, Surdez D, Tomazou EM, de Álava E, Kovar H, et al. Ewing sarcoma. Nat Rev Dis Prim. 2018;4:5.

    Article  PubMed  Google Scholar 

  3. Balamuth NJ, Womer RB. Ewing’s sarcoma. Lancet Oncol. 2010;11:184–92.

    Article  CAS  PubMed  Google Scholar 

  4. Riggi N, Suvà ML, Stamenkovic I. Ewing’s Sarcoma. N. Engl J Med. 2021;384:154–64.

    Article  CAS  PubMed  Google Scholar 

  5. Erkizan HV, Kong Y, Merchant M, Schlottmann S, Barber-Rotenberg JS, Yuan L, et al. A small molecule blocking oncogenic protein EWS-FLI1 interaction with RNA helicase A inhibits growth of Ewing’s sarcoma. Nat Med. 2009;15:750–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Riggi N, Knoechel B, Gillespie SM, Rheinbay E, Boulay G, Suvà ML, et al. EWS-FLI1 utilizes divergent chromatin remodeling mechanisms to directly activate or repress enhancer elements in Ewing sarcoma. Cancer Cell. 2014;26:668–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kovar H. Dr. Jekyll and Mr. Hyde: the two faces of the FUS/EWS/TAF15 protein family. Sarcoma. 2011;2011:837474.

    Article  PubMed  Google Scholar 

  8. Cidre-Aranaz F, Alonso J. EWS/FLI1 target genes and therapeutic opportunities in Ewing sarcoma. Front Oncol. 2015;5:162.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fidaleo M, De Paola E, Paronetto MP. The RNA helicase A in malignant transformation. Oncotarget. 2016;7:28711–23.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cristini A, Groh M, Kristiansen MS, Gromak N. RNA/DNA hybrid interactome identifies DXH9 as a molecular player in transcriptional termination and R-loop-associated DNA damage. Cell Rep. 2018;23:1891–905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee T, Paquet M, Larsson O, Pelletier J. Tumor cell survival dependence on the DHX9 DExH-box helicase. Oncogene. 2016;35:5093–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chakraborty P, Huang JTJ, Hiom K. DHX9 helicase promotes R-loop formation in cells with impaired RNA splicing. Nat Commun. 2018;9:4346.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gulliver C, Hoffmann R, Baillie GS. The enigmatic helicase DHX9 and its association with the hallmarks of cancer. Future Sci OA. 2020;7:FSO650.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fidaleo M, Svetoni F, Volpe E, Miñana B, Caporossi D, Paronetto MP. Genotoxic stress inhibits Ewing sarcoma cell growth by modulating alternative pre-mRNA processing of the RNA helicase DHX9. Oncotarget. 2015;6:31740–57.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Palombo R, Paronetto MP. pncCCND1_B Engages an Inhibitory Protein Network to Downregulate CCND1 Expression upon DNA Damage. Cancers (Basel) 2022; 14.

  16. Palombo R, Verdile V, Paronetto MP. Poison-exon inclusion in DHX9 reduces its expression and sensitizes ewing sarcoma cells to chemotherapeutic Treatment. Cells. 2020;9:328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Chellini L, Pieraccioli M, Sette C, Paronetto MP. The DNA/RNA helicase DHX9 contributes to the transcriptional program of the androgen receptor in prostate cancer. J Exp Clin Cancer Res. 2022;41:178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu S, He L, Wu J, Wu X, Xie L, Dai W, et al. DHX9 contributes to the malignant phenotypes of colorectal cancer via activating NF-κB signaling pathway. Cell Mol Life Sci. 2021;78:8261–81.

    Article  CAS  PubMed  Google Scholar 

  19. Cao S, Sun R, Wang W, Meng X, Zhang Y, Zhang N, et al. RNA helicase DHX9 may be a therapeutic target in lung cancer and inhibited by enoxacin. Am J Transl Res. 2017;9:674–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Erkizan HV, Schneider JA, Sajwan K, Graham GT, Griffin B, Chasovskikh S et al. RNA helicase A activity is inhibited by oncogenic transcription factor EWS-FLI1. Nucleic Acids Res. 2015.

  21. Palombo R, Frisone P, Fidaleo M, Mercatelli N, Sette C, Paronetto MP. The promoter-associated noncoding RNA. Cancer Res. 2019;79:3570–82.

    Article  CAS  PubMed  Google Scholar 

  22. Kollareddy M, Sherrard A, Park JH, Szemes M, Gallacher K, Melegh Z, et al. The small molecule inhibitor YK-4-279 disrupts mitotic progression of neuroblastoma cells, overcomes drug resistance and synergizes with inhibitors of mitosis. Cancer Lett. 2017;403:74–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Spriano F, Chung EYL, Gaudio E, Tarantelli C, Cascione L, Napoli S, et al. The ETS inhibitors YK-4-279 and TK-216 are novel antilymphoma agents. Clin Cancer Res. 2019;25:5167–76.

    Article  CAS  PubMed  Google Scholar 

  24. Xue J, Li S, Shi P, Chen M, Yu S, Hong S, et al. The ETS inhibitor YK-4-279 suppresses thyroid cancer progression independently. Front Oncol. 2021;11:649323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rahim S, Minas T, Hong SH, Justvig S, Çelik H, Kont YS, et al. A small molecule inhibitor of ETV1, YK-4-279, prevents prostate cancer growth and metastasis in a mouse xenograft model. PLoS ONE. 2014;9:e114260.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Povedano JM, Li V, Lake KE, Bai X, Rallabandi R, Kim J, et al. TK216 targets microtubules in Ewing sarcoma cells. Cell Chem Biol. 2022;29:1325–32.e1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ludwig JA, Meyers PA, Dirksen U. Ewing’s sarcoma. N. Engl J Med. 2021;384:1476.

    Article  PubMed  Google Scholar 

  28. Yan M, Yang X, Wang H, Shao Q. The critical role of histone lysine demethylase KDM2B in cancer. Am J Transl Res. 2018;10:2222–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Vacík T, Lađinović D, Raška I. KDM2A/B lysine demethylases and their alternative isoforms in development and disease. Nucleus. 2018;9:431–41.

    Article  PubMed  PubMed Central  Google Scholar 

  30. He S, Huang Q, Hu J, Li L, Xiao Y, Yu H, et al. EWS-FLI1-mediated tenascin-C expression promotes tumour progression by targeting MALAT1 through integrin α5β1-mediated YAP activation in Ewing sarcoma. Br J Cancer. 2019;121:922–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bierbaumer L, Katschnig AM, Radic-Sarikas B, Kauer MO, Petro JA, Högler S, et al. YAP/TAZ inhibition reduces metastatic potential of Ewing sarcoma cells. Oncogenesis. 2021;10:2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rodríguez-Núñez P, Romero-Pérez L, Amaral AT, Puerto-Camacho P, Jordán C, Marcilla D, et al. Hippo pathway effectors YAP1/TAZ induce an EWS-FLI1-opposing gene signature and associate with disease progression in Ewing sarcoma. J Pathol. 2020;250:374–86.

    Article  PubMed  Google Scholar 

  33. Katschnig AM, Kauer MO, Schwentner R, Tomazou EM, Mutz CN, Linder M, et al. EWS-FLI1 perturbs MRTFB/YAP-1/TEAD target gene regulation inhibiting cytoskeletal autoregulatory feedback in Ewing sarcoma. Oncogene. 2017;36:5995–6005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Truong DD, Lamhamedi-Cherradi SE, Ludwig JA. Targeting the IGF/PI3K/mTOR pathway and AXL/YAP1/TAZ pathways in primary bone cancer. J Bone Oncol. 2022;33:100419.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Padeken J, Methot SP, Gasser SM. Establishment of H3K9-methylated heterochromatin and its functions in tissue differentiation and maintenance. Nat Rev Mol Cell Biol. 2022;23:623–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Toretsky JA, Erkizan V, Levenson A, Abaan OD, Parvin JD, Cripe TP, et al. Oncoprotein EWS-FLI1 activity is enhanced by RNA helicase A. Cancer Res. 2006;66:5574–81.

    Article  CAS  PubMed  Google Scholar 

  37. Filion C, Labelle Y. The oncogenic fusion protein EWS/NOR-1 induces transformation of CFK2 chondrogenic cells. Exp Cell Res. 2004;297:585–92.

    Article  CAS  PubMed  Google Scholar 

  38. Wei GH, Badis G, Berger MF, Kivioja T, Palin K, Enge M, et al. Genome-wide analysis of ETS-family DNA-binding in vitro and in vivo. EMBO J. 2010;29:2147–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN, et al. The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis. Genes Dev. 2013;27:2543–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Myöhänen S, Baylin SB. Sequence-specific DNA binding activity of RNA helicase A to the p16INK4a promoter. J Biol Chem. 2001;276:1634–42.

    Article  PubMed  Google Scholar 

  41. Nakajima T, Uchida C, Anderson SF, Lee CG, Hurwitz J, Parvin JD, et al. RNA helicase A mediates association of CBP with RNA polymerase II. Cell. 1997;90:1107–12.

    Article  CAS  PubMed  Google Scholar 

  42. Chakraborty P, Hiom K. DHX9-dependent recruitment of BRCA1 to RNA promotes DNA end resection in homologous recombination. Nat Commun. 2021;12:4126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Palombo R, Paronetto MP. Engages an inhibitory protein network to downregulate. Cancers (Basel) 2022; 14.

  44. Chakraborty P, Grosse F. Human DHX9 helicase preferentially unwinds RNA-containing displacement loops (R-loops) and G-quadruplexes. DNA Repair (Amst). 2011;10:654–65.

    Article  CAS  PubMed  Google Scholar 

  45. He J, Shen L, Wan M, Taranova O, Wu H, Zhang Y. Kdm2b maintains murine embryonic stem cell status by recruiting PRC1 complex to CpG islands of developmental genes. Nat Cell Biol. 2013;15:373–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He J, Kallin EM, Tsukada Y, Zhang Y. The H3K36 demethylase Jhdm1b/Kdm2b regulates cell proliferation and senescence through p15(Ink4b). Nat Struct Mol Biol. 2008;15:1169–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jiang Y, Li C, Wu Q, An P, Huang L, Wang J, et al. Iron-dependent histone 3 lysine 9 demethylation controls B cell proliferation and humoral immune responses. Nat Commun. 2019;10:2935.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Meng Z, Moroishi T, Guan KL. Mechanisms of Hippo pathway regulation. Genes Dev. 2016;30:1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Becker JS, Nicetto D, Zaret KS. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet. 2016;32:29–41.

    Article  CAS  PubMed  Google Scholar 

  50. Chung YR, Schatoff E, Abdel-Wahab O. Epigenetic alterations in hematopoietic malignancies. Int J Hematol. 2012;96:413–27.

    Article  CAS  PubMed  Google Scholar 

  51. Wiencke JK, Zheng S, Morrison Z, Yeh RF. Differentially expressed genes are marked by histone 3 lysine 9 trimethylation in human cancer cells. Oncogene. 2008;27:2412–21.

    Article  CAS  PubMed  Google Scholar 

  52. Sankar S, Theisen ER, Bearss J, Mulvihill T, Hoffman LM, Sorna V, et al. Reversible LSD1 inhibition interferes with global EWS/ETS transcriptional activity and impedes Ewing sarcoma tumor growth. Clin Cancer Res. 2014;20:4584–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Biedler JL, Helson L, Spengler BA. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 1973;33:2643–52.

    CAS  PubMed  Google Scholar 

  54. Seeger RC, Rayner SA, Banerjee A, Chung H, Laug WE, Neustein HB, et al. Morphology, growth, chromosomal pattern and fibrinolytic activity of two new human neuroblastoma cell lines. Cancer Res. 1977;37:1364–71.

    CAS  PubMed  Google Scholar 

  55. Whang-Peng J, Triche TJ, Knutsen T, Miser J, Kao-Shan S, Tsai S, et al. Cytogenetic characterization of selected small round cell tumors of childhood. Cancer Genet Cytogenet. 1986;21:185–208.

    Article  CAS  PubMed  Google Scholar 

  56. Wang Y, Einhorn P, Triche TJ, Seeger RC, Reynolds CP. Expression of protein gene product 9.5 and tyrosine hydroxylase in childhood small round cell tumors. Clin Cancer Res. 2000;6:551–8.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Associazione Italiana Ricerca sul Cancro (AIRC) (IG21877) to MPP, and from the Italian Ministry of Health (SG-2019-12371596) to LC.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, LC and MPP; methodology, LC; formal analysis, LC; investigation, LC and MPP; IHC, DB; mouse xenografts, LC and MS; data curation, LC and MPP; writing-original draft preparation, LC and MPP; writing-review and editing, CS and MPP; supervision, MPP; project administration, MPP; funding acquisition, LC and MPP. The authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Lidia Chellini or Maria Paola Paronetto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chellini, L., Scarfò, M., Bonvissuto, D. et al. The DNA/RNA helicase DHX9 orchestrates the KDM2B-mediated transcriptional regulation of YAP1 in Ewing sarcoma. Oncogene 43, 225–234 (2024). https://doi.org/10.1038/s41388-023-02894-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-023-02894-1

Search

Quick links