Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Quantification of protein interactions and solution transport using high-density GMR sensor arrays

Abstract

Monitoring the kinetics of protein interactions on a high-density sensor array is vital to drug development and proteomic analysis. Label-free kinetic assays based on surface plasmon resonance are the current gold standard, but they have poor detection limits, suffer from non-specific binding, and are not amenable to high-throughput analyses. Here, we show that magnetically responsive nanosensors that have been scaled to over 100,000 sensors per cm2 can be used to measure the binding kinetics of various proteins with high spatial and temporal resolution. We present an analytical model that describes the binding of magnetically labelled antibodies to proteins that are immobilized on the sensor surface. This model is able to quantify the kinetics of antibody–antigen binding at sensitivities as low as 20 zeptomoles of solute.

This is a preview of subscription content, access via your institution

Access options

Figure 1: GMR nanosensor and nanoparticle system for kinetic analysis.
Figure 2: Comparison of experimentally generated binding curves to kinetic model predictions.
Figure 3: The kinetic model can predict the number of protein binding events.
Figure 4: Visualization of spatiotemporal resolution of the sensor array.

Similar content being viewed by others

References

  1. Schena, M., Shalon, D., Davis, R. W. & Brown, P. O. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270, 467–470 (1995).

    Article  CAS  Google Scholar 

  2. MacBeath, G. & Schreiber, S. L. Printing proteins as microarrays for high-throughput function determination. Science 289, 1760–1763 (2000).

    CAS  Google Scholar 

  3. Zheng, G., Patolsky, F., Cui, Y., Wang, W. U. & Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnol. 23, 1294–1301 (2005).

    Article  CAS  Google Scholar 

  4. James, L. C. & Tawfik, D. S. Structure and kinetics of a transient antibody binding intermediate reveal a kinetic discrimination mechanism in antigen recognition. Proc. Natl Acad. Sci. USA 102, 12730–12735 (2005).

    Article  CAS  Google Scholar 

  5. LaBaer, J. & Ramachandran, N. Protein microarrays as tools for functional proteomics. Curr. Opin. Chem. Biol. 9, 14–19 (2005).

    Article  CAS  Google Scholar 

  6. Park, J. et al. A highly sensitive and selective diagnostic assay based on virus nanoparticles. Nature Nanotech. 4, 259–264 (2009).

    Article  CAS  Google Scholar 

  7. Hudson, P. J. & Souriau, C. Engineered antibodies. Nature Med. 9, 129–134 (2003).

    Article  CAS  Google Scholar 

  8. Schrama, D., Reisfeld, R. A. & Becker, J. C. Antibody targeted drugs as cancer therapeutics. Nature Rev. Drug Discov. 5, 147–159 (2006).

    Article  CAS  Google Scholar 

  9. Sinensky, A. K. & Belcher, A. M. Label-free and high-resolution protein//DNA nanoarray analysis using kelvin probe force microscopy. Nature Nanotech. 2, 653–659 (2007).

    Article  CAS  Google Scholar 

  10. Haab, B. B., Dunham, M. J. & Brown, P. O. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol. 2, research0004.1-research0004.13 (2001).

  11. Wilson, W. D. Analyzing biomolecular interactions. Science 295, 2103–2105 (2002).

    Article  CAS  Google Scholar 

  12. Bornhop, D. J. et al. Free-solution, label-free molecular interactions studied by back-scattering interferometry. Science 317, 1732–1736 (2007).

    Article  CAS  Google Scholar 

  13. Stern, E. et al. Label-free biomarker detection from whole blood. Nature Nanotech. 5, 138–142 (2010).

    Article  CAS  Google Scholar 

  14. Squires, T. M., Messinger, R. J. & Manalis, S. R. Making it stick: convection, reaction and diffusion in surface-based biosensors. Nature Biotechnol. 26, 417–426 (2008).

    Article  CAS  Google Scholar 

  15. Ramachandran, N. et al. Self-assembling protein microarrays. Science 305, 86–90 (2004).

    Article  CAS  Google Scholar 

  16. Patolsky, F. et al. Electrical detection of single viruses. Proc. Natl Acad. Sci. USA 101, 14017–14022 (2004).

    Article  CAS  Google Scholar 

  17. Patolsky, F. & Lieber, C. M. Nanowire nanosensors. Materials Today 8, 20–28 (2005).

    Article  CAS  Google Scholar 

  18. Berg, H. & Purcell, E. Physics of chemoreception. Biophys. J. 20, 193–219 (1977).

    Article  CAS  Google Scholar 

  19. Berg, O. G. & von Hippel, P. H. Diffusion-controlled macromolecular interactions. Annu. Rev. Biophys. Biophys. Chem. 14, 131–160 (1985).

    Article  CAS  Google Scholar 

  20. Stenberg, M. & Nygren, H. Kinetics of antigen–antibody reactions at solid–liquid interfaces. J. Immunol. Methods 113, 3–15 (1988).

    Article  CAS  Google Scholar 

  21. Waite, B. A. & Stewart, J. D. An idealized dynamical model of simple diffusional interactions between macromolecules and between macromolecules and surfaces. Math. Biosci. 114, 173–213 (1993).

    Article  CAS  Google Scholar 

  22. Sheehan, P. E. & Whitman, L. J. Detection limits for nanoscale biosensors. Nano Lett. 5, 803–807 (2005).

    Article  CAS  Google Scholar 

  23. Swift, J. L. & Cramb, D. T. Nanoparticles as fluorescence labels: is size all that matters? Biophys. J. 95, 865–876 (2008).

    Article  CAS  Google Scholar 

  24. Röcker, C., Pötzl, M., Zhang, F., Parak, W. J. & Nienhaus, G. U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nature Nanotech. 4, 577–580 (2009).

    Article  Google Scholar 

  25. Osterfeld, S. J. et al. Multiplex protein assays based on real-time magnetic nanotag sensing. Proc. Natl Acad. Sci. USA 105, 20637–20640 (2008).

    Article  CAS  Google Scholar 

  26. Gaster, R. S. et al. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nature Med. 15, 1327–1332 (2009).

    Article  CAS  Google Scholar 

  27. Gaster, R. S., Hall, D. A. & Wang, S. X. nanoLAB: an ultraportable, handheld diagnostic laboratory for global health. Lab Chip 11, 950–956 (2011).

    Article  CAS  Google Scholar 

  28. Baibich, M. N. et al. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61, 2472–2475 (1988).

    Article  CAS  Google Scholar 

  29. Barnas, J., Fuss, A., Camley, R., Grünberg, P. & Zinn, W. Novel magnetoresistance effect in layered magnetic structures: theory and experiment. Phys. Rev. B 42, 8110–8120 (1990).

    Article  CAS  Google Scholar 

  30. Prinz, G. A. Magnetoelectronics. Science 282, 1660–1663 (1998).

    Article  CAS  Google Scholar 

  31. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  32. Mulvaney, S., Myers, K., Sheehan, P. & Whitman, L. Attomolar protein detection in complex sample matrices with semi-homogeneous fluidic force discrimination assays. Biosens. Bioelectron. 24, 1109–1115 (2009).

    Article  CAS  Google Scholar 

  33. Baselt, D. R. et al. A biosensor based on magnetoresistance technology. Biosens. Bioelectron. 13, 731–739 (1998).

    Article  CAS  Google Scholar 

  34. Sandhu, A. Biosensing: new probes offer much faster results. Nature Nanotech. 2, 746–748 (2007).

    Article  CAS  Google Scholar 

  35. Koets, M., van der Wijk, T., van Eemeren, J., van Amerongen, A. & Prins, M. Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor. Biosens. Bioelectron. 24, 1893–1898 (2009).

    Article  CAS  Google Scholar 

  36. Xu, L. et al. Giant magnetoresistive biochip for DNA detection and HPV genotyping. Biosens. Bioelectron. 24, 99–103 (2008).

    Article  CAS  Google Scholar 

  37. Koh, A. L. & Sinclair, R. TEM studies of iron oxide nanoparticles for cell labeling and magnetic separation. Technical Proceedings of the 2007 NSTI Nanotechnology Conference and Trade Show, 101–104 (2007).

  38. De Palma, R. et al. Magnetic particles as labels in bioassays: interactions between a biotinylated gold substrate and streptavidin magnetic particles. J. Phys. Chem. C 111, 12227–12235 (2007).

    Article  CAS  Google Scholar 

  39. Malmqvist, M. Biospecific interaction analysis using biosensor technology. Nature 361, 186–187 (1993).

    Article  CAS  Google Scholar 

  40. Katsamba, P. S. et al. Kinetic analysis of a high-affinity antibody/antigen interaction performed by multiple Biacore users. Anal. Biochem. 352, 208–221 (2006).

    Article  CAS  Google Scholar 

  41. Lausted, C., Hu, Z. & Hood, L. Quantitative serum proteomics from surface plasmon resonance imaging. Mol. Cell Proteomics 7, 2464–2474 (2008).

    Article  CAS  Google Scholar 

  42. Rich, R. L. & Myszka, D. G. Higher-throughput, label-free, real-time molecular interaction analysis. Anal. Biochem. 361, 1–6 (2007).

    Article  CAS  Google Scholar 

  43. Campbell, C. T. & Kim, G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28, 2380–2392 (2007).

    Article  CAS  Google Scholar 

  44. Wang, S. & Guanxiong Li. Advances in giant magnetoresistance biosensors with magnetic nanoparticle tags: review and outlook. IEEE Trans. Magnetics 44, 1687–1702 (2008).

    Article  Google Scholar 

  45. Myszka, D. G., He, X., Dembo, M., Morton, T. A. & Goldstein, B. Extending the range of rate constants available from BIACORE: interpreting mass transport-influenced binding data. Biophys. J 75, 583–594 (1998).

    Article  CAS  Google Scholar 

  46. Reichert, J. M. & Valge-Archer, V. E. Development trends for monoclonal antibody cancer therapeutics. Nature Rev. Drug Discov. 6, 349–356 (2007).

    Article  CAS  Google Scholar 

  47. Willett, C. G. et al. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nature Med. 10, 145–147 (2004).

    Article  CAS  Google Scholar 

  48. Anderson, N. L. The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin. Chem. 56, 177–185 (2010).

    Article  CAS  Google Scholar 

  49. Cai, W. et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6, 669–676 (2006).

    Article  CAS  Google Scholar 

  50. Gaster, R. S., Hall, D. A. & Wang, S. X. Autoassembly protein arrays for analyzing antibody cross-reactivity. Nano Lett. doi:10.1021/nl1026056 (2010).

  51. Srisa-Art, M., Dyson, E. C., deMello, A. J. & Edel, J. B. Monitoring of real-time streptavidin–biotin binding kinetics using droplet microfluidics. Anal. Chem. 80, 7063–7067 (2008).

    Article  CAS  Google Scholar 

  52. Barbosa, M. D., Chamberlain, A. K. & Desjarlais, J. R. Optimized proteins that target Ep-CAM. US patent 7,557,190 (2009), available via http://go.nature.com/lbOXuD

  53. Hefta, L. J. F., Neumaier, M. & Shively, J. E. Kinetic and affinity constants of epitope specific anti-carcinoembryonic antigen (CEA) monoclonal antibodies for CEA and engineered CEA domain constructs. Immunotechnology 4, 49–57 (1998).

    Article  CAS  Google Scholar 

  54. Chen, Y. et al. Selection and analysis of an optimized anti-VEGF antibody: crystal structure of an affinity-matured fab in complex with antigen. J. Mol. Biol. 293, 865–881 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the United States National Cancer Institute (grants 1U54CA119367, 1U54CA143907, 1U54CA151459 and N44CM–2009-00011), the United States National Science Foundation (grant ECCS-0801385-000), the United States Defense Advanced Research Projects Agency/Navy (grant N00014–02-1–0807), a Gates Foundation Grand Challenge Exploration Award and The National Semiconductor Corporation. R.S.G. acknowledges financial support from the Stanford Medical School Medical Scientist Training Program and a National Science Foundation graduate research fellowship. The authors thank M. Hammer and A. Bhattacharjee for editing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

R.S.G. and S.X.W designed the research. R.S.G. performed the research. R.S.G., R.J.W. and S.X.W developed the model. R.S.G., L.X., S.H., R.J.W., D.A.H., S.J.O., H.Y. and S.X.W. contributed analytical tools. R.S.G., R.J.W. and S.X.W analysed the data. S.J.O., L.X., S.H. and S.X.W. designed the magnetic sensor arrays. R.S.G. and H.Y. developed the biochemistry. R.S.G. and S.X.W. wrote the paper.

Corresponding author

Correspondence to Shan X. Wang.

Ethics declarations

Competing interests

Stanford University has licensed part of the magnetic bioassay chip technology contained in this publication to MagArray Inc., an early stage startup company in Silicon Valley, USA. S.X.W, H.Y., and S.J.O. hold financial interests in MagArray in the form of stock options.

Supplementary information

Supplementary information

Supplementary information (PDF 1486 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaster, R., Xu, L., Han, SJ. et al. Quantification of protein interactions and solution transport using high-density GMR sensor arrays. Nature Nanotech 6, 314–320 (2011). https://doi.org/10.1038/nnano.2011.45

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nnano.2011.45

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research