Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetoelastic metamaterials

Abstract

The study of advanced artificial electromagnetic materials, known as metamaterials, provides a link from material science to theoretical and applied electrodynamics, as well as to electrical engineering. Being initially intended mainly to achieve negative refraction1,2, the concept of metamaterials quickly covered a much broader range of applications, from microwaves to optics and even acoustics3,4. In particular, nonlinear metamaterials established a new research direction 5,6,7,8,9,10,11,12 giving rise to fruitful ideas for tunable and active artificial materials13,14,15. Here we introduce the concept of magnetoelastic metamaterials, where a new type of nonlinear response emerges from mutual interaction. This is achieved by providing a mechanical degree of freedom so that the electromagnetic interaction in the metamaterial lattice is coupled to elastic interaction. This enables the electromagnetically induced forces to change the metamaterial structure, dynamically tuning its effective properties. This concept leads to a new generation of metamaterials, and can be compared to such fundamental concepts of modern physics as optomechanics16 of photonic structures or magnetoelasticity in magnetic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: An anisotropic magnetic metamaterial combined with an elastic medium.
Figure 2: General explanation of magnetoelastic behaviour.
Figure 3: Power dependence of the metamaterial response.
Figure 4: Frequency dependence of the magnetoelastic response.
Figure 5: Experimental observation of the magnetoelastic nonlinearity.

Similar content being viewed by others

References

  1. Smith, D. R., Padilla, W. J., Vier, D. C., Nemat-Nasser, S. C. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2000).

    Article  CAS  Google Scholar 

  2. Pendry, J. B. Electromagnetic materials enter the negative age. Phys. World 14, 47–51 (September, 2001).

    Article  CAS  Google Scholar 

  3. Li, J. & Chan, C. T. Double-negative acoustic metamaterial. Phys. Rev. E 70, 055602 (2004).

    Article  Google Scholar 

  4. Norris, A. N. Acoustic cloaking theory. Proc. R. Soc. A 464, 2411–2434 (2008).

    Article  CAS  Google Scholar 

  5. Zharov, A. A., Shadrivov, I. V. & Kivshar, Y. S. Nonlinear properties of left-handed metamaterials. Phys. Rev. Lett. 91, 037401 (2003).

    Article  Google Scholar 

  6. Lapine, M., Gorkunov, M. & Ringhofer, K. H. Nonlinearity of a metamaterial arising from diode insertions into resonant conductive elements. Phys. Rev. E 67, 065601 (2003).

    Article  CAS  Google Scholar 

  7. Agranovich, V. M., Shen, Y. R., Baughman, R. H. & Zakhidov, A. A. Linear and nonlinear wave propagation in negative refraction metamaterials. Phys. Rev. B 69, 165112 (2004).

    Article  Google Scholar 

  8. Scalora, M. et al. Generalized nonlinear Schrödinger equation for dispersive susceptibility and permeability: Application to negative index materials. Phys. Rev. Lett. 95, 013902 (2005).

    Article  Google Scholar 

  9. Popov, A. K. & Shalaev, V. M. Compensating losses in negative-index metamaterials by optical parametric amplification. Opt. Lett. 31, 2169–2171 (2006).

    Article  Google Scholar 

  10. Gabitov, I. R. et al. Double-resonant optical materials with embedded metal nanostructures. J. Opt. Soc. Am. B 23, 535–542 (2006).

    Article  CAS  Google Scholar 

  11. Syms, R. R. A., Solymar, L. & Young, I. R. Three-frequency parametric amplification in magneto-inductive ring resonators. Metamaterials 2, 122–134 (2008).

    Article  Google Scholar 

  12. Rose, A., Huang, D. & Smith, D.R. Controlling the second harmonic in a phase-matched negative-index metamaterial. Phys. Rev. Lett. 107, 063902 (2011).

    Article  Google Scholar 

  13. Boardman, A. et al. Active and tunable metamaterials. Lasers Photon. Rev. 5, 287–307 (2011).

    Article  CAS  Google Scholar 

  14. Chen, P-Y., Farhat, M. & Alú, A. Bistable and self-tunable negative-index metamaterial at optical frequencies. Phys. Rev. Lett. 106, 105503 (2011).

    Article  Google Scholar 

  15. Ou, J. Y., Plum, E., Jiang, L. & Zheludev, N. I. Reconfigurable photonic metamaterials. Nano Lett. 11, 2142–2144 (2011).

    Article  CAS  Google Scholar 

  16. Marquardt, F. & Girvin, S. M. Optomechanics. Physics 2, 40 (2009).

    Article  Google Scholar 

  17. Kalinin, V. A. & Shtykov, V. V. On the possibility of reversing the front of radio waves in an artificial nonlinear medium. Sov. J. Commun. Technol. Electron. 36, 96–102 (1991).

    Google Scholar 

  18. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

    Article  Google Scholar 

  19. Shamonina, E., Kalinin, V., Ringhofer, K. H. & Solymar, L. Magneto-inductive waveguide. Electron. Lett. 38, 371–373 (2002).

    Article  Google Scholar 

  20. Gorkunov, M., Lapine, M., Shamonina, E. & Ringhofer, K. H. Effective magnetic properties of a composite material with circular conductive elements. Eur. Phys. J. B 28, 263–269 (2002).

    Article  CAS  Google Scholar 

  21. Lapine, M. et al. Structural tunability in metamaterials. Appl. Phys. Lett. 95, 084105 (2009).

    Article  Google Scholar 

  22. Powell, D. A., Lapine, M., Gorkunov, M., Shadrivov, I. V. & Kivshar, Y. S. Metamaterial tuning by manipulation of near-field interaction. Phys. Rev. B 82, 155128 (2010).

    Article  Google Scholar 

  23. Tao, H. et al. Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 147401 (2009).

    Article  Google Scholar 

  24. Zhao, R., Tassin, P., Koschny, T. & Soukoulis, C. Optical forces in nanowire pairs and metamaterials. Opt. Express 18, 25665–25676 (2010).

    Article  CAS  Google Scholar 

  25. Perminov, S. V., Drachev, V. P. & Rautian, S. G. Optical bistability driven by the light-induced forces between metal nanoparticles. Opt. Letters 33, 2998–3000 (2008).

    Article  Google Scholar 

  26. Marqués, R., Martín, F. & Sorolla, M. Metamaterials with Negative Parameters (Wiley, 2008).

    Google Scholar 

  27. Landau, L. D. & Lifschitz, E. M. Electrodynamics of Continuous Media (Pergamon Press, 1984).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council. The authors thank M. Gorkunov and A. Sukhorukov for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

Theoretical analysis was carried out by M.L. and experiments were carried out by I.V.S. and D.A.P. All authors analysed and discussed the results. The manuscript was written by M.L., Y.S.K., D.A.P. and I.V.S. and the figures were prepared by I.V.S., D.A.P. and M.L.

Corresponding author

Correspondence to Mikhail Lapine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lapine, M., Shadrivov, I., Powell, D. et al. Magnetoelastic metamaterials. Nature Mater 11, 30–33 (2012). https://doi.org/10.1038/nmat3168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing