Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Imaging with metamaterials

Subjects

Abstract

Metamaterials enable precise tailoring of light–matter interactions at the subwavelength scale, permitting access to the full range of electromagnetic responses encoded in Maxwell’s equations and operating across a huge swath of the electromagnetic spectrum. These salient features have, during the past two decades, fuelled fundamental metamaterials research which, in turn, has unveiled an impressive assemblage of potential applications. Imaging is at the forefront of these developments, leveraging the ability of metamaterials to achieve arbitrary, specific and tunable scattering responses that are poised for integration with a host of materials and devices. We review the impact of metamaterials and metasurface on imaging science and technology from microwave to optical frequencies. Our focus is on metamaterial-based imaging components and the associated imaging modalities that benefit from these advances.

Key points

  • Metamaterials are 2D or 3D structures comprising subwavelength metallic or dielectric pixels that enable precision tailoring of light–matter interactions.

  • A host of functional imaging components including lenses, polarizers, modulators and detectors have been realized using metamaterials as stand-alone structures and through integration with numerous materials and devices.

  • Metamaterials enable new operational modalities, including single-pixel imaging and leaky wave aperture transceivers for component-free imaging.

  • Broadly, metamaterials serve as an intuitive and unifying design paradigm spanning from radiofrequency to visible wavelengths, taking advantage of advances in electromagnetic simulations and nanofabrication to achieve unprecedented control of light.

  • Metamaterials can be dynamically tuned, leading to on-demand optical components that could play an important role in future imaging technologies such as dynamic holography.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metamaterial and metasurface imaging approaches and applications spanning the electromagnetic spectrum.
Fig. 2: Examples of subwavelength elements used in the design of electromagnetic metamaterials.
Fig. 3: Examples of all-dielectric metalenses operating at infrared and optical wavelengths.
Fig. 4: GRIN optics.
Fig. 5: Examples of metamaterial spatial light modulators and surface wave apertures used for imaging.
Fig. 6: Metamaterial detector modalities.

Similar content being viewed by others

References

  1. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    Article  ADS  Google Scholar 

  2. Stav, T. et al. Quantum entanglement of the spin and orbital angular momentum of photons using metamaterials. Science 361, 1101–1104 (2018).

    Article  ADS  Google Scholar 

  3. Zagoskin, A. M., Felbacq, D. & Rousseau, E. Quantum metamaterials in the microwave and optical ranges. EPJ Quantum Technol. 3, 2 (2016).

    Article  Google Scholar 

  4. Wiltshire, M. C. K. Microstructured magnetic materials for RF flux guides in magnetic resonance imaging. Science 291, 849–851 (2001).

    Article  ADS  Google Scholar 

  5. Kundtz, N. & Smith, D. R. Extreme-angle broadband metamaterial lens. Nat. Mater. 9, 129–132 (2009).

    Article  ADS  Google Scholar 

  6. Wang, S. et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol. 13, 227–232 (2018).

    Article  ADS  Google Scholar 

  7. Chang, C.-C. et al. Broadband linear-to-circular polarization conversion enabled by birefringent off-resonance reflective metasurfaces. Phys. Rev. Lett. 123, 237401 (2019).

    Article  ADS  Google Scholar 

  8. Chen, H.-T. et al. Active terahertz metamaterial devices. Nature 444, 597–600 (2006).

    Article  ADS  Google Scholar 

  9. Hunt, J. et al. Metamaterial apertures for computational imaging. Science 339, 310–313 (2013).

    Article  ADS  Google Scholar 

  10. Huang, L., Zhang, S. & Zentgraf, T. Metasurface holography: from fundamentals to applications. Nanophotonics 7, 1169–1190 (2018).

    Article  Google Scholar 

  11. Holloway, C. L. et al. An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antennas Propag. Mag. 54, 10–35 (2012).

    Article  ADS  Google Scholar 

  12. Genevet, P., Capasso, F., Aieta, F., Khorasaninejad, M. & Devlin, R. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica 4, 139 (2017).

    Article  ADS  Google Scholar 

  13. Schurig, D., Mock, J. J. & Smith, D. R. Electric-field-coupled resonators for negative permittivity metamaterials. Appl. Phys. Lett. 88, 041109 (2006).

    Article  ADS  Google Scholar 

  14. Padilla, W. J. et al. Electrically resonant terahertz metamaterials: theoretical and experimental investigations. Phys. Rev. B 75, 041102 (2007).

    Article  ADS  Google Scholar 

  15. Schuller, J. A., Zia, R., Taubner, T. & Brongersma, M. L. Dielectric metamaterials based on electric and magnetic resonances of silicon carbide particles. Phys. Rev. Lett. 99, 107401 (2007).

    Article  ADS  Google Scholar 

  16. Jahani, S. & Jacob, Z. All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016).

    Article  ADS  Google Scholar 

  17. Yu, N. & Capasso, F. Flat optics with designer metasurfaces. Nat. Mater. 13, 139–150 (2014).

    Article  ADS  Google Scholar 

  18. Smith, D., Padilla, W., Vier, D., Nemat-Nasser, S. & Schultz, S. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184 (2000).

    Article  ADS  Google Scholar 

  19. Smith, D. R., Vier, D. C., Koschny, T. & Soukoulis, C. M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 36617 (2005).

    Article  ADS  Google Scholar 

  20. Greegor, R. et al. Simulation and testing of a graded negative index of refraction lens. Appl. Phys. Lett. 87, 091114 (2005). Demonstration of metamaterial gradient index lens.

    Article  ADS  Google Scholar 

  21. Smith, D. R., Mock, J. J., Starr, A. & Schurig, D. Gradient index metamaterials. Phys. Rev. E 71, 036609 (2005).

    Article  ADS  Google Scholar 

  22. Pendry, J. B. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  24. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  MathSciNet  ADS  Google Scholar 

  25. Rahm, M., Li, J.-S. & Padilla, W. J. Thz wave modulators: a brief review on different modulation techniques. J. Infrared Millim. Terahertz Waves 34, 1–27 (2013).

    Article  Google Scholar 

  26. Stratton, J. Electromagnetic Theory (IEEE, 2007).

  27. Mo, T. C., Papas, C. H. & Baum, C. E. General scaling method for electromagnetic fields with application to a matching problem. J. Math. Phys. 14, 479–483 (1973).

    Article  ADS  Google Scholar 

  28. Zhao, X., Duan, G., Wu, K., Anderson, S. W. & Zhang, X. Intelligent metamaterials based on nonlinearity for magnetic resonance imaging. Adv. Mater. 31, 1905461 (2019).

    Article  Google Scholar 

  29. Gollub, J. N. et al. Large metasurface aperture for millimeter wave computational imaging at the human-scale. Sci. Rep. 7, 42650 (2017).

    Article  ADS  Google Scholar 

  30. Escorcia, I., Grant, J., Gough, J. & Cumming, D. R. S. Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode. Opt. Lett. 41, 3261 (2016).

    Article  ADS  Google Scholar 

  31. Suen, J. Y. et al. Multifunctional metamaterial pyroelectric infrared detectors. Optica 4, 276 (2017). Demonstration of a fully integrated metamaterial detector.

    Article  ADS  Google Scholar 

  32. Ye, W. et al. Spin and wavelength multiplexed nonlinear metasurface holography. Nat. Commun. 7, 11930 (2016).

    Article  ADS  Google Scholar 

  33. Lalanne, P. & Chavel, P. Metalenses at visible wavelengths: past, present, perspectives. Laser Photonics Rev. 11, 1600295 (2017).

    Article  ADS  Google Scholar 

  34. Lee, D., Gwak, J., Badloe, T., Palomba, S. & Rho, J. Metasurfaces-based imaging and applications: from miniaturized optical components to functional imaging platforms. Nanoscale Adv. 2, 605–625 (2020).

    Article  ADS  Google Scholar 

  35. Forbes, A., de Oliveira, M. & Dennis, M. R. Structured light. Nat. Photonics 15, 253–262 (2021).

    Article  ADS  Google Scholar 

  36. Smirnova, D., Leykam, D., Chong, Y. & Kivshar, Y. Nonlinear topological photonics. Appl. Phys. Rev. 7, 021306 (2020).

    Article  ADS  Google Scholar 

  37. Capolino, F. Theory and Phenomena of Metamaterials (CRC, 2009).

    Google Scholar 

  38. Simovski, C An Introduction to Metamaterials and Nanophotonics (Cambridge Univ. Press, 2020).

    Book  Google Scholar 

  39. Engheta, N. Metamaterials: Physics and Engineering Explorations (Wiley-Interscience, 2006).

    Book  Google Scholar 

  40. Padilla, W., Basov, D. & Smith, D. Negative refractive index metamaterials. Mater. Today 9, 28–35 (2006).

    Article  Google Scholar 

  41. Ming, X., Liu, X., Sun, L. & Padilla, W. J. Degenerate critical coupling in all-dielectric metasurface absorbers. Opt. Express 25, 24658 (2017).

    Article  ADS  Google Scholar 

  42. Sautter, J. et al. Active tuning of all-dielectric metasurfaces. ACS Nano 9, 4308–4315 (2015).

    Article  Google Scholar 

  43. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  44. Chen, H.-T., Taylor, A. J. & Yu, N. A review of metasurfaces: physics and applications. Rep. Prog. Phys. 79, 076401 (2016).

    Article  ADS  Google Scholar 

  45. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  ADS  Google Scholar 

  46. Pfeiffer, C. & Grbic, A. Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets. Phys. Rev. Lett. 110, 197401 (2013).

    Article  ADS  Google Scholar 

  47. Decker, M. et al. High-efficiency dielectric Huygens’ surfaces. Adv. Opt. Mater. 3, 813–820 (2015).

    Article  Google Scholar 

  48. Chen, W. T. et al. A broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol. 13, 220–226 (2018).

    Article  ADS  Google Scholar 

  49. Paniagua-Domínguez, R. et al. A metalens with a near-unity numerical aperture. Nano Lett. 18, 2124–2132 (2018).

    Article  ADS  Google Scholar 

  50. Lipworth, G. et al. Metamaterial apertures for coherent computational imaging on the physical layer. J. Opt. Soc. Am. A 30, 1603–1612 (2013).

    Article  ADS  Google Scholar 

  51. Li, L. et al. Machine-learning reprogrammable metasurface imager. Nat. Commun. 10, 1082 (2019).

    Article  ADS  Google Scholar 

  52. Watts, C. M. et al. Terahertz compressive imaging with metamaterial spatial light modulators. Nat. Photonics 8, 605–609 (2014). Experimental study showing single pixel imaging with a metamaterial spatial light modulator.

    Article  ADS  Google Scholar 

  53. Zeng, B. et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl. 7, 51 (2018).

    Article  ADS  Google Scholar 

  54. Golay, M. J. E. Multi-slit spectrometry. J. Opt. Soc. Am. 39, 437–444 (1949).

    Article  ADS  Google Scholar 

  55. Dicke, R. H. Scatter-hole cameras for X-rays and gamma rays. Astrophys. J. 153, L101 (1968).

    Article  ADS  Google Scholar 

  56. Brady, D. J. (ed.) in Optical Imaging and Spectroscopy 11–53 (Wiley, 2008).

  57. Yao, P. et al. Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides. Phys. Rev. B 80, 195106 (2009).

    Article  ADS  Google Scholar 

  58. Jacob, Z., Smolyaninov, I. I. & Narimanov, E. E. Broadband Purcell effect: radiative decay engineering with metamaterials. Appl. Phys. Lett. 100, 181105 (2012).

    Article  ADS  Google Scholar 

  59. Iorsh, I., Poddubny, A., Orlov, A., Belov, P. & Kivshar, Y. S. Spontaneous emission enhancement in metal–dielectric metamaterials. Phys. Lett. A 376, 185–187 (2012).

    Article  ADS  Google Scholar 

  60. Lu, D., Kan, J. J., Fullerton, E. E. & Liu, Z. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat. Nanotechnol. 9, 48–53 (2014).

    Article  ADS  Google Scholar 

  61. Costantini, D. et al. Plasmonic metasurface for directional and frequency-selective thermal emission. Phys. Rev. Appl. 4, 014023 (2015).

    Article  ADS  Google Scholar 

  62. Luo, L. et al. Broadband terahertz generation from metamaterials. Nat. Commun. 5, 3055 (2014). Experimental demonstration of a metamaterial source operating at terahertz frequencies.

    Article  ADS  Google Scholar 

  63. Yardimci, N. T. & Jarrahi, M. Nanostructure-enhanced photoconductive terahertz emission and detection. Small 14, 1802437 (2018).

    Article  Google Scholar 

  64. Burokur, S. N., Daniel, J. P., Ratajczak, P. & De Lustrac, A. Tunable bilayered metasurface for frequency reconfigurable directive emissions. Appl. Phys. Lett. 97, 064101 (2010).

    Article  ADS  Google Scholar 

  65. Fong, B. H., Colburn, J. S., Ottusch, J. J., Visher, J. L. & Sievenpiper, D. F. Scalar and tensor holographic artificial impedance surfaces. IEEE Trans. Antennas Propag. 58, 3212–3221 (2010).

    Article  ADS  Google Scholar 

  66. TextXBadawe, M. E., Almoneef, T. S. & Ramahi, O. M. A true metasurface antenna. Sci. Rep. 6, 19268 (2016).

    Article  ADS  Google Scholar 

  67. Smith, D. R., Yurduseven, O., Mancera, L. P., Bowen, P. & Kundtz, N. B. Analysis of a waveguide-fed metasurface antenna. Phys. Rev. Appl. 8, 054048 (2017).

    Article  ADS  Google Scholar 

  68. Huang, L. et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 4, 2808 (2013).

    Article  ADS  Google Scholar 

  69. Deng, Z.-L., Li, X. & Li, G. Metasurface holography. Synth. Lectures Mater. Opt. 1, 1–76 (2020).

    Article  Google Scholar 

  70. Almeida, E., Bitton, O. & Prior, Y. Nonlinear metamaterials for holography. Nat. Commun. 7, 12533 (2016).

    Article  ADS  Google Scholar 

  71. Liu, X., Starr, T., Starr, A. F. & Padilla, W. J. Infrared spatial and frequency selective metamaterial with near-unity absorbance. Phys. Rev. Lett. 104, 1–4 (2010).

    Article  Google Scholar 

  72. Liu, X. & Padilla, W. J. Reconfigurable room temperature metamaterial infrared emitter. Optica 4, 430 (2017).

    Article  ADS  Google Scholar 

  73. Fan, K., Suen, J. Y. & Padilla, W. J. Graphene metamaterial spatial light modulator for infrared single pixel imaging. Opt. Express 25, 25318 (2017).

    Article  ADS  Google Scholar 

  74. Chen, Q. & Cumming, D. R. S. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films. Opt. Express 18, 14056 (2010).

    Article  ADS  Google Scholar 

  75. Xu, T., Wu, Y.-K., Luo, X. & Guo, L. J. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging. Nat. Commun. 1, 159 (2010).

    Article  Google Scholar 

  76. Larouche, S., Tsai, Y. J., Tyler, T., Jokerst, N. M. & Smith, D. R. Infrared metamaterial phase holograms. Nat. Mater. 11, 450–454 (2012).

    Article  ADS  Google Scholar 

  77. Malek, S. C., Ee, H.-S. & Agarwal, R. Strain multiplexed metasurface holograms on a stretchable substrate. Nano Lett. 17, 3641–3645 (2017).

    Article  ADS  Google Scholar 

  78. Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).

    Article  ADS  Google Scholar 

  79. Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Phys. Usp. 10, 509–514 (1968).

    Article  ADS  Google Scholar 

  80. Pendry, J. B., Holden, A. J., Stewart, W. J. & Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).

    Article  ADS  Google Scholar 

  81. Pendry, J. B., Holden, A. J., Robbins, D. J. & Stewart, W. J. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microw. Theory Tech. 47, 2075–2084 (1999).

    Article  ADS  Google Scholar 

  82. Shelby, R. A. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  83. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000). Study predicting perfect lens properties possible with negative refractive index metamaterials.

    Article  ADS  Google Scholar 

  84. Adams, W., Sadatgol, M. & Güney, D. O. Review of near-field optics and superlenses for sub-diffraction-limited nano-imaging. AIP Adv. 6, 100701 (2016).

    Article  ADS  Google Scholar 

  85. Grbic, A. & Eleftheriades, G. V. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004). Subwavelength focusing with negative index metamaterials.

    Article  ADS  Google Scholar 

  86. Fang, N. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005). Experimental demonstration of a metamaterial superlens.

    Article  ADS  Google Scholar 

  87. Taubner, T., Korobkin, D., Urzhumov, Y., Shvets, G. & Hillenbrand, R. Near-field microscopy through a SiC superlens. Science 313, 1595–1595 (2006).

    Article  Google Scholar 

  88. Lu, D. & Liu, Z. Hyperlenses and metalenses for far-field super-resolution imaging. Nat. Commun. 3, 1205 (2012).

    Article  ADS  Google Scholar 

  89. Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247 (2006).

    Article  ADS  Google Scholar 

  90. Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006).

    Article  ADS  Google Scholar 

  91. Maxwell, J. C. The Scientific Papers of James Clerk Maxwell, Vol. 1 (Dover, 2011).

  92. Luneburg, R. K. Mathematical Theory of Optics (Univ. California Press, 1964).

    Book  MATH  Google Scholar 

  93. Wood, R. Physical Optics (Macmillan, 1911).

  94. Marchand, E. Gradient Index Optics (Academic, 1978).

    Google Scholar 

  95. PIERSCIONEK, B. K. Refractive index contours in the human lens. Exp. Eye Res. 64, 887–893 (1997).

    Article  Google Scholar 

  96. Pierscionek, B. K. & Regini, J. W. The gradient index lens of the eye: an opto-biological synchrony. Prog. Retin. Eye Res. 31, 332–349 (2012).

    Article  Google Scholar 

  97. Partridge, J. C. et al. Reflecting optics in the diverticular eye of a deep-sea barreleye fish (Rhynchohyalus natalensis). Proc. R. Soc. B Biol. Sci. 281, 20133223 (2014).

    Article  Google Scholar 

  98. Rim, S.-B., Catrysse, P. B., Dinyari, R., Huang, K. & Peumans, P. The optical advantages of curved focal plane arrays. Opt. Express 16, 4965 (2008).

    Article  ADS  Google Scholar 

  99. Liu, R. et al. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials. Opt. Express 17, 21030 (2009).

    Article  ADS  Google Scholar 

  100. Driscoll, T. et al. Free-space microwave focusing by a negative-index gradient lens. Appl. Phys. Lett. 88, 081101 (2006).

    Article  ADS  Google Scholar 

  101. Ebbesen, T. W., Lezec, H. J., Ghaemi, H. F., Thio, T. & Wolff, P. A. Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391, 667–669 (1998).

    Article  ADS  Google Scholar 

  102. Yin, L. et al. Subwavelength focusing and guiding of surface plasmons. Nano Lett. 5, 1399–1402 (2005).

    Article  ADS  Google Scholar 

  103. Liu, Z. et al. Focusing surface plasmons with a plasmonic lens. Nano Lett. 5, 1726–1729 (2005).

    Article  ADS  Google Scholar 

  104. Huang, F. M., Zheludev, N., Chen, Y. & de Abajo, F. J. G. Focusing of light by a nanohole array. Appl. Phys. Lett. 90, 091119 (2007).

    Article  ADS  Google Scholar 

  105. Shi, H. et al. Beam manipulating by metallic nano-slits with variant widths. Opt. Express 13, 6815 (2005).

    Article  ADS  Google Scholar 

  106. Verslegers, L. et al. Planar lenses based on nanoscale slit arrays in a metallic film. Nano Lett. 9, 235–238 (2009).

    Article  ADS  Google Scholar 

  107. Sun, Z. & Kim, H. K. Refractive transmission of light and beam shapingwith metallic nano-optic lenses. Appl. Phys. Lett. 85, 642–644 (2004).

    Article  ADS  Google Scholar 

  108. Collischon, M. et al. Binary blazed reflection gratings. Appl. Opt. 33, 3572 (1994).

    Article  ADS  Google Scholar 

  109. Zangwill, A. Modern Electrodynamics (Cambridge Univ. Press, 2013).

    MATH  Google Scholar 

  110. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Article  ADS  Google Scholar 

  111. Khorasaninejad, M. & Capasso, F. Metalenses: versatile multifunctional photonic components. Science 358, eaam8100 (2017).

    Article  Google Scholar 

  112. Staude, I. & Schilling, J. Metamaterial-inspired silicon nanophotonics. Nat. Photonics 11, 274–284 (2017).

    Article  ADS  Google Scholar 

  113. Kamali, S. M., Arbabi, E., Arbabi, A. & Faraon, A. A review of dielectric optical metasurfaces for wavefront control. Nanophotonics 7, 1041–1068 (2018).

    Article  Google Scholar 

  114. Kruk, S. & Kivshar, Y. Functional meta-optics and nanophotonics governed by mie resonances. ACS Photonics 4, 2638–2649 (2017).

    Article  Google Scholar 

  115. Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Blazed binary subwavelength gratings with efficiencies larger than those of conventional échelette gratings. Opt. Lett. 23, 1081 (1998).

    Article  ADS  Google Scholar 

  116. Lalanne, P., Astilean, S., Chavel, P., Cambril, E. & Launois, H. Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff. J. Opt. Soc. Am. A 16, 1143 (1999).

    Article  ADS  Google Scholar 

  117. Hasman, E., Kleiner, V., Biener, G. & Niv, A. Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics. Appl. Phys. Lett. 82, 328–330 (2003).

    Article  ADS  Google Scholar 

  118. Khorasaninejad, M. et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352, 1190–1194 (2016).

    Article  ADS  Google Scholar 

  119. Liu, W., Cheng, H., Tian, J. & Chen, S. Diffractive metalens: from fundamentals, practical applications to current trends. Adv. Phys. X 5, 1742584 (2020).

    Google Scholar 

  120. Moon, S.-W., Kim, Y., Yoon, G. & Rho, J. Recent progress on ultrathin metalenses for flat optics. iScience 23, 101877 (2020).

    Article  ADS  Google Scholar 

  121. Zou, X. et al. Imaging based on metalenses. PhotoniX 1, 2 (2020).

    Article  Google Scholar 

  122. Chen, W. T., Zhu, A. Y. & Capasso, F. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater. 5, 604–620 (2020).

    Article  ADS  Google Scholar 

  123. Banerji, S. et al. Imaging with flat optics: metalenses or diffractive lenses? Optica 6, 805 (2019).

    Article  ADS  Google Scholar 

  124. Engelberg, J. & Levy, U. The advantages of metalenses over diffractive lenses. Nat. Commun. 11, 1991 (2020).

    Article  ADS  Google Scholar 

  125. Arbabi, A., Horie, Y., Ball, A. J., Bagheri, M. & Faraon, A. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays. Nat. Commun. 6, 7069 (2015).

    Article  ADS  Google Scholar 

  126. Arbabi, E., Arbabi, A., Kamali, S. M., Horie, Y. & Faraon, A. Multiwavelength metasurfaces through spatial multiplexing. Sci. Rep. 6, 32803 (2016).

    Article  ADS  Google Scholar 

  127. Pahlevaninezhad, H. et al. Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12, 540–547 (2018).

    Article  ADS  Google Scholar 

  128. Yoon, G., Kim, K., Huh, D., Lee, H. & Rho, J. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun. 11, 2268 (2020).

    Article  ADS  Google Scholar 

  129. Schurig, D., Pendry, J. B. & Smith, D. R. Transformation-designed optical elements. Opt. Express 15, 14772 (2007). Experimental report demonstrating the design of optical components through transformation optics.

    Article  ADS  Google Scholar 

  130. Sun, F. et al. Transformation optics: from classic theory and applications to its new branches. Laser Photonics Rev. 11, 1700034 (2017).

    Article  ADS  Google Scholar 

  131. Schurig, D. An aberration-free lens with zero F-number. New J. Phys. 10, 115034 (2008).

    Article  ADS  Google Scholar 

  132. Landy, N. I., Kundtz, N. & Smith, D. R. Designing three-dimensional transformation optical media using quasiconformal coordinate transformations. Phys. Rev. Lett. 105, 193902 (2010).

    Article  ADS  Google Scholar 

  133. Zhao, Y.-Y. et al. Three-dimensional Luneburg lens at optical frequencies. Laser Photonics Rev. 10, 665–672 (2016).

    Article  ADS  Google Scholar 

  134. Rahm, M. et al. Design of electromagnetic cloaks and concentrators using form-invariant coordinate transformations of Maxwell’s equations. Photonics Nanostruct. Fundamentals Appl. 6, 87–95 (2008).

    Article  ADS  Google Scholar 

  135. Roberts, D. A., Rahm, M., Pendry, J. B. & Smith, D. R. Transformation-optical design of sharp waveguide bends and corners. Appl. Phys. Lett. 93, 251111 (2008).

    Article  ADS  Google Scholar 

  136. Smith, D. R., Urzhumov, Y., Kundtz, N. B. & Landy, N. I. Enhancing imaging systems using transformation optics. Opt. Express 18, 21238 (2010).

    Article  ADS  Google Scholar 

  137. Zhang, J., Pendry, J. B. & Luo, Y. Transformation optics from macroscopic to nanoscale regimes: a review. Adv. Photonics 1, 1 (2019).

    Article  Google Scholar 

  138. Chen, H., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nat. Mater. 9, 387–396 (2010).

    Article  ADS  Google Scholar 

  139. Ginis, V. & Tassin, P. Transformation optics beyond the manipulation of light trajectories. Phil. Trans. R. Soc. A 373, 20140361 (2015).

    Article  ADS  Google Scholar 

  140. McCall, M. et al. Roadmap on transformation optics. J. Opt. 20, 063001 (2018).

    Article  ADS  Google Scholar 

  141. Isakov, D., Stevens, C. J., Castles, F. & Grant, P. S. 3D-printed high dielectric contrast gradient index flat lens for a directive antenna with reduced dimensions. Adv. Mater. Technol. 1, 1600072 (2016).

    Article  Google Scholar 

  142. Zhou, F. et al. Additive manufacturing of a 3D terahertz gradient-refractive index lens. Adv. Opt. Mater. 4, 1034–1040 (2016).

    Article  Google Scholar 

  143. Chan, W. L. et al. A spatial light modulator for terahertz beams. Appl. Phys. Lett. 94, 213511 (2009).

    Article  ADS  Google Scholar 

  144. Chaves, J. Introduction to Nonimaging Optics (CRC, 2016).

  145. Winston, R. Nonimaging Optics (Elsevier, 2005).

  146. Davis, D. S. Multiplexed imaging by means of optically generated Kronecker products: 1. The basic concept. Appl. Opt. 34, 1170 (1995).

    Article  ADS  Google Scholar 

  147. Nadell, C. C., Watts, C. M., Montoya, J. A., Krishna, S. & Padilla, W. J. Single pixel quadrature imaging with metamaterials. Adv. Opt. Mater. 4, 66–69 (2015).

    Article  Google Scholar 

  148. Watts, C. M., Nadell, C. C., Montoya, J., Krishna, S. & Padilla, W. J. Frequency-division-multiplexed single-pixel imaging with metamaterials. Optica 3, 133 (2016).

    Article  ADS  Google Scholar 

  149. Fan, K., Suen, J., Wu, X. & Padilla, W. J. Graphene metamaterial modulator for free-space thermal radiation. Opt. Express 24, 25189 (2016).

    Article  ADS  Google Scholar 

  150. Hand, T. H. & Cummer, S. A. Reconfigurable reflectarray using addressable metamaterials. IEEE Antennas Wirel. Propag. Lett. 9, 70–74 (2010).

    Article  ADS  Google Scholar 

  151. Badloe, T., Mun, J. & Rho, J. Metasurfaces-based absorption and reflection control: perfect absorbers and reflectors. J. Nanomater. 2017, 2361042 (2017).

    Article  Google Scholar 

  152. Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).

    Article  ADS  Google Scholar 

  153. Renzo, M. D. et al. Smart radio environments empowered by reconfigurable AI meta-surfaces: an idea whose time has come. EURASIP J. Wirel. Commun. Netw. 2019, 129 (2019).

    Article  Google Scholar 

  154. Renzo, M. D. et al. Reconfigurable intelligent surfaces vs. relaying: differences, similarities, and performance comparison. IEEE Open J. Commun. Soc. 1, 798–807 (2020).

    Article  Google Scholar 

  155. Liaskos, C. et al. A new wireless communication paradigm through software-controlled metasurfaces. IEEE Commun. Mag. 56, 162–169 (2018).

    Article  Google Scholar 

  156. Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218–e218 (2014).

    Article  ADS  Google Scholar 

  157. Abadal, S., Cui, T.-J., Low, T. & Georgiou, J. Programmable metamaterials for software-defined electromagnetic control: circuits, systems, and architectures. IEEE J. Emerg. Sel. Topics Circuits Syst. 10, 6–19 (2020).

    Article  ADS  Google Scholar 

  158. Li, L. et al. Intelligent metasurface imager and recognizer. Light Sci. Appl. 8, 97 (2019).

    Article  ADS  Google Scholar 

  159. Marcuvitz, N. Waveguide Handbook (McGraw-Hill, 1951).

    Google Scholar 

  160. Collin, R. Field Theory of Guided Waves (IEEE, 1991).

    MATH  Google Scholar 

  161. Harvey, A. F. Periodic and guiding structures at microwave frequencies. IRE Trans. Microw. Theory Tech. 8, 30–61 (1960).

    Article  ADS  Google Scholar 

  162. Jackson, D. R., Caloz, C. & Itoh, T. Leaky-wave antennas. Proc. IEEE 100, 2194–2206 (2012).

    Article  Google Scholar 

  163. Chen, H.-T. et al. Complementary planar terahertz metamaterials. Opt. Express 15, 1084–1095 (2007).

    Article  ADS  Google Scholar 

  164. Tao, H. et al. Microwave and terahertz wave sensing with metamaterials. Opt. Express 19, 21620 (2011). Experimental demonstration of a metamaterial bolometric detector.

    Article  ADS  Google Scholar 

  165. Niesler, F. B. P., Gansel, J. K., Fischbach, S. & Wegener, M. Metamaterial metal-based bolometers. Appl. Phys. Lett. 100, 203508 (2012).

    Article  ADS  Google Scholar 

  166. Szentpáli, B. et al. Thermopile antennas for detection of millimeter waves. Appl. Phys. Lett. 96, 133507 (2010).

    Article  ADS  Google Scholar 

  167. Sizov, F. Terahertz radiation detectors: the state-of-the-art. Semicond. Sci. Technol. 33, 123001 (2018).

    Article  ADS  Google Scholar 

  168. Hui, Y., Gomez-Diaz, J. S., Qian, Z., Alù, A. & Rinaldi, M. Plasmonic piezoelectric nanomechanical resonator for spectrally selective infrared sensing. Nat. Commun. 7, 11249 (2016).

    Article  ADS  Google Scholar 

  169. Montoya, J. A., Tian, Z.-B., Krishna, S. & Padilla, W. J. Ultra-thin infrared metamaterial detector for multicolor imaging applications. Opt. Express 25, 23343 (2017).

    Article  ADS  Google Scholar 

  170. Li, W. & Valentine, J. Metamaterial perfect absorber based hot electron photodetection. Nano Lett. 14, 3510–3514 (2014).

    Article  ADS  Google Scholar 

  171. Benz, A. et al. Resonant metamaterial detectors based on THz quantum-cascade structures. Sci. Rep. 4, 4269 (2014).

    Article  Google Scholar 

  172. Kuznetsov, S. A., Paulish, A. G., Navarro-Cía, M. & Arzhannikov, A. V. Selective pyroelectric detection of millimetre waves using ultra-thin metasurface absorbers. Sci. Rep. 6, 21079 (2016).

    Article  ADS  Google Scholar 

  173. Maier, T. & Brueckl, H. Multispectral microbolometers for the midinfrared. Opt. Lett. 35, 3766 (2010).

    Article  ADS  Google Scholar 

  174. Stewart, J. W., Vella, J. H., Li, W., Fan, S. & Mikkelsen, M. H. Ultrafast pyroelectric photodetection with on-chip spectral filters. Nat. Mater. 19, 158–162 (2019).

    Article  ADS  Google Scholar 

  175. Jung, J.-Y. et al. Infrared broadband metasurface absorber for reducing the thermal mass of a microbolometer. Sci. Rep. 7, 430 (2017).

    Article  ADS  Google Scholar 

  176. Stöckmann, F. Photodetectors, their performance and their limitations. Appl. Phys. 7, 1–5 (1975).

    Article  ADS  Google Scholar 

  177. Rogalski, A. Infrared and Terahertz Detectors (CRC, 2018).

  178. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).

    Article  ADS  Google Scholar 

  179. Freire, M. J., Marques, R. & Jelinek, L. Experimental demonstration of a μ = −1 metamaterial lens for magnetic resonance imaging. Appl. Phys. Lett. 93, 231108 (2008). Experimental demonstration of a negative μ metamaterial for MRI.

    Article  ADS  Google Scholar 

  180. Haines, K., Neuberger, T., Lanagan, M., Semouchkina, E. & Webb, A. High Q calcium titanate cylindrical dielectric resonators for magnetic resonance microimaging. J. Magn. Reson. 200, 349–353 (2009).

    Article  ADS  Google Scholar 

  181. Freire, M. J., Jelinek, L., Marques, R. & Lapine, M. On the applications of metamaterial lenses for magnetic resonance imaging. J. Magn. Reson. 203, 81–90 (2010).

    Article  ADS  Google Scholar 

  182. Slobozhanyuk, A. P. et al. Enhancement of magnetic resonance imaging with metasurfaces. Adv. Mater. 28, 1832–1838 (2016).

    Article  Google Scholar 

  183. Zhang, S. et al. Solid-immersion metalenses for infrared focal plane arrays. Appl. Phys. Lett. 113, 111104 (2018).

    Article  ADS  Google Scholar 

  184. Wu, P. C. et al. Visible metasurfaces for on-chip polarimetry. ACS Photonics 5, 2568–2573 (2017).

    Article  Google Scholar 

  185. Arbabi, E., Kamali, S. M., Arbabi, A. & Faraon, A. Full-Stokes imaging polarimetry using dielectric metasurfaces. ACS Photonics 5, 3132–3140 (2018).

    Article  Google Scholar 

  186. Li, W. & Valentine, J. G. Harvesting the loss: surface plasmon-based hot electron photodetection. Nanophotonics 6, 177–191 (2017).

    Article  Google Scholar 

  187. Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

    Article  ADS  Google Scholar 

  188. Lu, F., Lee, J., Jiang, A., Jung, S. & Belkin, M. A. Thermopile detector of light ellipticity. Nat. Commun. 7, 12994 (2016).

    Article  ADS  Google Scholar 

  189. Wei, J. et al. Zero-bias mid-infrared graphene photodetectors with bulk photoresponse and calibration-free polarization detection. Nat. Commun. 11, 6404 (2020).

    Article  ADS  Google Scholar 

  190. Kuznetsov, S. A., Paulish, A. G., Gelfand, A. V., Lazorskiy, P. A. & Fedorinin, V. N. Bolometric THz-to-IR converter for terahertz imaging. Appl. Phys. Lett. 99, 023501 (2011).

    Article  ADS  Google Scholar 

  191. Alves, F., Pimental, L., Grbovic, D. & Karunasiri, G. MEMS terahertz-to-infrared band converter using frequency selective planar metamaterial. Sci. Rep. 8, 12466 (2018).

    Article  ADS  Google Scholar 

  192. Fan, K., Suen, J. Y., Liu, X. & Padilla, W. J. All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica 4, 601 (2017).

    Article  ADS  Google Scholar 

  193. Haldane, F. D. M. & Raghu, S. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100, 013904 (2008).

    Article  ADS  Google Scholar 

  194. Lu, L., Joannopoulos, J. D. & Soljačić, M. Topological photonics. Nat. Photonics 8, 821–829 (2014).

    Article  ADS  Google Scholar 

  195. Shitrit, N. et al. Spin-optical metamaterial route to spin-controlled photonics. Science 340, 724–726 (2013).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  196. Li, G. et al. Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light. Nano Lett. 13, 4148–4151 (2013).

    Article  ADS  Google Scholar 

  197. Karimi, E. et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, e167 (2014).

    Article  Google Scholar 

  198. Hsu, C. W., Zhen, B., Stone, A. D., Joannopoulos, J. D. & Soljačić, M. Bound states in the continuum. Nat. Rev. Mater. 1, 370–387 (2016).

    Article  Google Scholar 

  199. Kodigala, A. et al. Lasing action from photonic bound states in continuum. Nature 541, 196–199 (2017).

    Article  ADS  Google Scholar 

  200. Tao, H. et al. Reconfigurable terahertz metamaterials. Phys. Rev. Lett. 103, 13864–13878 (2009).

    Article  Google Scholar 

  201. Liu, M. et al. Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487, 345–348 (2012).

    Article  ADS  Google Scholar 

  202. Zhao, X. et al. Electromechanically tunable metasurface transmission waveplate at terahertz frequencies. Optica 5, 303 (2018).

    Article  ADS  Google Scholar 

  203. Lee, J. et al. Ultrafast electrically tunable polaritonic metasurfaces. Adv. Opt. Mater. 2, 1057–1063 (2014).

    Article  Google Scholar 

  204. Shrekenhamer, D., Chen, W.-C. & Padilla, W. J. Liquid crystal tunable metamaterial absorber. Phys. Rev. Lett. 110, 177403 (2013).

    Article  ADS  Google Scholar 

  205. Verre, R. et al. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol. 14, 679–683 (2019).

    Article  ADS  Google Scholar 

  206. Song, J. C. W. & Gabor, N. M. Electron quantum metamaterials in van der Waals heterostructures. Nat. Nanotechnol. 13, 986–993 (2018).

    Article  ADS  Google Scholar 

  207. Wang, J. & Jiang, Y. Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials. Opt. Express 25, 5206 (2017).

    Article  ADS  Google Scholar 

  208. Diebold, A. V., Imani, M. F., Sleasman, T. & Smith, D. R. Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures. Optica 5, 1529 (2018).

    Article  ADS  Google Scholar 

  209. Harmuth, H. Sequency Theory: Foundations and Applications (Academic, 1977).

    MATH  Google Scholar 

  210. Harwit, M. Hadamard Transform Optics (Academic, 1979).

    MATH  Google Scholar 

  211. Edgar, M. P., Gibson, G. M. & Padgett, M. J. Principles and prospects for single-pixel imaging. Nat. Photonics 13, 13–20 (2018).

    Article  ADS  Google Scholar 

  212. Swift, R. D., Wattson, R. B., Decker, J. A., Paganetti, R. & Harwit, M. Hadamard transform imager and imaging spectrometer. Appl. Opt. 15, 1595 (1976).

    Article  ADS  Google Scholar 

  213. Zhang, Z., Ma, X. & Zhong, J. Single-pixel imaging by means of Fourier spectrum acquisition. Nat. Commun. 6, 6225 (2015).

    Article  ADS  Google Scholar 

  214. Wenwen, M. et al. Sparse Fourier single-pixel imaging. Opt. Express 27, 31490 (2019).

    Article  ADS  Google Scholar 

  215. Stantchev, R. I. & Pickwell-MacPherson, E. in Terahertz Technology (IntechOpen, 2021).

  216. Takhar, D. et al. in Computational Imaging IV Vol. 6065 (eds Bouman, C. A. et al.) 606509 (SPIE, 2006).

  217. Pitsianis, N. P. et al. in Intelligent Integrated Microsystems Vol. 6232 (eds Athale, R. A. & Zolper, J. C.) 62320A (SPIE, 2006).

  218. Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory 52, 1289–1306 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  219. Candes, E., Romberg, J. & Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52, 489–509 (2006).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

W.J.P. acknowledges support from the US Department of Energy (DOE) (DESC0014372). R.D.A. acknowledges the DARPA DRINQS programme (grant no. D18AC00014) and ARO Award W911NF-16-1-0361. The authors thank their colleagues and collaborators, in addition to the many students and postdocs who made this research possible.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Willie J. Padilla or Richard D. Averitt.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Lingling Huang and the other, anonymous, reviewer(s) for their contribution to the peer review of this manuscript.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Mie modes

A resonance in a homogeneous sphere that is a solution to Maxwell’s equations and describes the subsequent scattering of an electromagnetic plane wave.

Hadamard matrix

A square matrix with entries that are either +1 or −1, and whose rows are mutually orthogonal.

Huygens’ principle

A concept describing every point on a wavefront as a source of spherical waves.

Huygens’ surfaces

A metasurface used to achieve a specific wavefront using the Huygens principle.

Transformation optics

(TO). A metamaterial design principle using coordinate transformations to specify spatially dependent metamaterial properties.

Binary phase-shift coding

A modulation method used to convey information through use of two different phase states of a carrier wave frequency.

Hadamard mask

A mask pattern that is formed from a row of the Hadamard matrix.

Babinet metamaterial

A metasurface formed using the Babinet principle, which states that the diffraction pattern from an opaque body is identical to that from a hole of the same size and shape except for the overall forward beam intensity.

Form factor

A hardware design aspect that defines and prescribes the size, shape and other physical specifications of components.

Swiss roll structure

A subwavelength structure comprising a conducting sheet coated on both sides with an insulating layer that is rolled up into a cylinder. These elements have a resonant magnetic permeability for magnetic fields along the axis of the cylinder and are primarily used for radiofrequency applications such as MRI.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padilla, W.J., Averitt, R.D. Imaging with metamaterials. Nat Rev Phys 4, 85–100 (2022). https://doi.org/10.1038/s42254-021-00394-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-021-00394-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing