Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Computational support for a pyrolitic lower mantle containing ferric iron

Abstract

The dominant minerals in Earth’s lower mantle are thought to be Fe- and Al-bearing MgSiO3 bridgmanite and (Mg, Fe)O ferropericlase1. However, experimental measurements of the elasticity of these minerals at realistic lower-mantle pressures and temperatures remain impractical. As a result, different compositional models for the Earth’s lower mantle have been proposed2,3,4. Theoretical simulations, which depend on empirical evaluations of the effects of Fe incorporation into these minerals, support a pyrolitic lower mantle that contains a significant amount of ferropericlase5,6, much like the Earth’s upper mantle. Here we present first-principles computations combined with a lattice dynamics approach that include the effects of Fe2+ and Fe3+ incorporation. We calculate the densities and elastic-wave velocities of several possible lower-mantle compositions with varying amounts of ferropericlase along a mantle geotherm. On the basis of our calculations of aggregate elasticities, we conclude that neither a perovskitic composition (about 9:1 bridgmanite to ferropericlase by volume) nor an olivine-like composition (about 7:3) reproduces the seismological reference model of average Earth properties. However, an intermediate volume fraction (about 8:2) consistent with a pyrolitic composition can reproduce the reference velocities and densities. Bridgmanite that is rich in ferric iron produces the best fit. Our findings support a uniform chemical composition throughout the present-day mantle, which we suggest is the result of whole-mantle convection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Volume compression curves of MgBr.
Figure 2: Longitudinal-wave velocities, bulk-sound velocities, shear-wave velocities, and densities of possible LM compositions along the geotherm.
Figure 3: Optimized Fe3+ ratio (Fe3+/ΣFe) in MgBr of pyrolitic composition.

Similar content being viewed by others

References

  1. Helffrich, G. & Wood, B. The Earth’s mantle. Nature 412, 501–507 (1994).

    Article  Google Scholar 

  2. Irifune, T. et al. Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 327, 193–195 (2010).

    Article  Google Scholar 

  3. Tange, Y., Kuwayama, Y., Irifune, T., Funakoshi, K. & Ohishi, Y. P-V-T equation of state of MgSiO3 perovskite based on the MgO pressure scale: A comprehensive reference for mineralogy of the lower mantle. J. Geophys. Res. 117, B06201 (2012).

    Article  Google Scholar 

  4. Murakami, M., Ohishi, Y., Hirao, N. & Hirose, K. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature 485, 90–94 (2012).

    Article  Google Scholar 

  5. Zhang, Z., Stixrude, L. & Brodholt, J. Elastic properties of MgSiO3-perovskite under lower mantle conditions and the composition of the deep Earth. Earth Planet. Sci. Lett. 379, 1–12 (2013).

    Article  Google Scholar 

  6. Cottaar, S., Heister, T., Rose, I. & Unterborn, C. BurnMan: A lower mantle mineral physics toolkit. Geochem. Geophys. Geosyst. 15, 1164–1179 (2014).

    Article  Google Scholar 

  7. Poirier, J-P. Introduction to the Physics of the Earth’s Interior (Cambridge Univ. Press, 2000).

    Book  Google Scholar 

  8. Jackson, I. Elasticity, composition and temperature of the Earth’s lower mantle: A reappraisal. Geophys. J. Int. 134, 291–311 (1998).

    Article  Google Scholar 

  9. Chantel, J., Frost, D. J., McCammon, C., Jing, Z. & Wang, Y. Acoustic velocities of pure and iron-bearing magnesium silicate perovskite measured to 25 GPa and 1200 K. Geophys. Res. Lett. 39, L19307 (2012).

    Article  Google Scholar 

  10. Stixrude, L., Hemley, R. J., Fei, Y. & Mao, H. K. Thermoelasticity of silicate perovskite and magnesiowüstite and stratification of the Earth’s mantle. Science 257, 1099–1101 (1992).

    Article  Google Scholar 

  11. Ricolleau, A. et al. Density profile of pyrolite under the lower mantle conditions. Geophys. Res. Lett. 36, L06302 (2009).

    Article  Google Scholar 

  12. Kellogg, L. H. Compositional stratification in the deep mantle. Science 283, 1881–1884 (1999).

    Article  Google Scholar 

  13. Badro, J. et al. Iron partitioning in Earth’s mantle: Toward a deep lower mantle discontinuity. Science 300, 789–791 (2003).

    Article  Google Scholar 

  14. Tsuchiya, T. & Kawai, K. Ab Initio Mineralogical Model of the Earth’s Lower Mantle, in Physics and Chemistry of the Deep Earth (John Wiley, 2013).

    Google Scholar 

  15. Wentzcovitch, R., Karki, B., Cococcioni, M. & deGironcoli, S. Thermoelastic properties of MgSiO3-perovskite: Insights on the nature of the Earth’s lower mantle. Phys. Rev. Lett. 92, 018501 (2004).

    Article  Google Scholar 

  16. Anisimov, V. I., Zaanen, J. & Andersen, O. K. Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys. Rev. B 44, 943–954 (1991).

    Article  Google Scholar 

  17. Dziewonski, A. M. & Andersion, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  18. Zhang, J. & Weidner, D. J. Thermal equation of state of aluminum-enriched silicate perovskite. Science 284, 782–784 (1999).

    Article  Google Scholar 

  19. Frost, D. J., Liebske, C. & Langenhorst, F. Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428, 409–412 (2004).

    Article  Google Scholar 

  20. Li, J. et al. Electronic spin state of iron in lower mantle perovskite. Proc. Natl Acad. Sci. USA 101, 14027–14030 (2004).

    Article  Google Scholar 

  21. Fukui, H., Tsuchiya, T. & Baron, A. Q. R. Lattice dynamics calculations for ferropericlase with internally consistent LDA+U method. J. Geophys. Res. 117, B12202 (2012).

    Article  Google Scholar 

  22. Metsue, A. & Tsuchiya, T. Thermodynamic properties of (Mg, Fe2+)SiO3 perovskite at the lower-mantle pressures and temperatures: An internally consistent LSDA+U study. Geophys. J. Int. 190, 310–322 (2012).

    Article  Google Scholar 

  23. Tsuchiya, T. & Wang, X. Ab initio investigation on the high-temperature thermodynamic properties of Fe3+-bearing MgSiO3 perovskite. J. Geophys. Res. 118, 83–91 (2013).

    Article  Google Scholar 

  24. Cococcioni, M. & deGironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).

    Article  Google Scholar 

  25. Brown, J. M. & Shankland, T. J. Thermodynamic properties in the Earth as determined from seismic profiles. Geophys. J. R. Astron. Soc. 66, 579–596 (1981).

    Article  Google Scholar 

  26. Li, J. et al. Pressure effect on the electronic structure of iron in (Mg, Fe)(Al, Si) O3 perovskite?: A combined synchrotron Mössbauer and X-ray emission spectroscopy study up to 100 GPa. Phys. Chem. Miner. 33, 575–585 (2006).

    Article  Google Scholar 

  27. McCammon, C. Perovskite as a possible sink for ferric iron in the lower mantle. Nature 387, 694–696 (1997).

    Article  Google Scholar 

  28. Sinmyo, R., Hirose, K., Muto, S., Ohishi, Y. & Yasuhara, A. The valence state and partitioning of iron in the Earth’s lowermost mantle. J. Geophys. Res. 116, B07205 (2011).

    Article  Google Scholar 

  29. Lundin, S. et al. Effect of Fe on the equation of state of mantle silicate perovskite over 1Mbar. Phys. Earth Planet. Inter. 168, 97–102 (2008).

    Article  Google Scholar 

  30. Nishio-Hamane, D., Seto, Y., Fujino, K. & Nagai, T. Effect of FeAlO3 incorporation into MgSiO3 on the bulk modulus of perovskite. Phys. Earth Planet. Inter. 166, 219–225 (2008).

    Article  Google Scholar 

  31. Hohenberg, P. & Kohn, W. Inhomogeneous electron gas. Phys. Rev. 136, B864–B871 (1964).

    Article  Google Scholar 

  32. Kohn, W. & Sham, L. J. Quantum density oscillations in an inhomogeneous electron gas. Phys. Rev. 123, A1697–A1705 (1965).

    Article  Google Scholar 

  33. Perdew, J., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  Google Scholar 

  34. Wang, X. & Tsuchiya, T. Ab initio computation on the Fe L-edge X-ray emission spectroscopy of Fe-bearing MgSiO3 perovskite. Am. Mineral. 99, 387–392 (2014).

    Article  Google Scholar 

  35. Alfè, D. PHON: A program to calculate phonons using the small displacement method. Comput. Phys. Commun. 180, 2622–2633 (2009).

    Article  Google Scholar 

  36. Giannozzi, P. et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  37. Tsuchiya, T. & Tsuchiya, J. Prediction of a hexagonal SiO2 phase affecting stabilities of MgSiO3 and CaSiO3 at multimegabar pressures. Proc. Natl Acad. Sci. USA 108, 1252–1255 (2011).

    Article  Google Scholar 

  38. Fiquet, G., Dewaele, A., Andrault, D., Kunz, M. & Le Bihan, T. Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophys. Res. Lett. 27, 21–24 (2000).

    Article  Google Scholar 

  39. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B. 13, 5188–5192 (1976).

    Article  Google Scholar 

  40. Karki, B. B., Wentzcovitch, R. M., Gironcoli, S. & Baroni, S. First-principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science 286, 1705–1707 (1999).

    Article  Google Scholar 

  41. Wentzcovitch, R. M., Tsuchiya, T. & Tsuchiya, J. MgSiO3 postperovskite at D′′ conditions. Proc. Natl Acad. Sci. USA 103, 543–546 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Z. Zeng and S. Whitaker for helpful comments. This research was supported by JSPS Grants-in-Aid for Scientific Research under Grant No. 25 03023, KAKENHI 20001005 and 21740379, and by the X-ray Free Electron Laser Priority Strategy Program (MEXT). X.W. was supported by research fellowships of the Global CoE program of Earth and Planetary Science, Ehime University, Japan, and of JSPS for Overseas Researchers.

Author information

Authors and Affiliations

Authors

Contributions

X.W. and T.T. designed the study and wrote the manuscript. X.W., T.T. and A.H. performed the calculations. X.W. analysed the data.

Corresponding authors

Correspondence to Xianlong Wang or Taku Tsuchiya.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Tsuchiya, T. & Hase, A. Computational support for a pyrolitic lower mantle containing ferric iron. Nature Geosci 8, 556–559 (2015). https://doi.org/10.1038/ngeo2458

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2458

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing