Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Functionalization of cobalt porphyrin–phospholipid bilayers with his-tagged ligands and antigens

Abstract

Methods to attach polypeptides to lipid bilayers are often indirect and ineffective, and can represent a substantial bottleneck in the formation of functionalized lipid-based materials. Although the polyhistidine tag (his-tag) has been transformative in its simplicity and efficacy in binding to immobilized metals, the successful application of this approach has been challenging in physiological settings. Here we show that lipid bilayers containing porphyrin–phospholipid conjugates that are chelated with cobalt, but not with other metals, can effectively capture his-tagged proteins and peptides. The binding follows a Co(II) to Co(III) transition and occurs within the sheltered hydrophobic bilayer, resulting in an essentially irreversible attachment in serum or in a million fold excess of competing imidazole. Using this approach we anchored homing peptides into the bilayer of preformed and cargo-loaded liposomes to enable tumour targeting without disrupting the bilayer integrity. As a further demonstration, a synthetic protein fragment derived from the human immunodeficiency virus was bound to immunogenic liposomes for potent antibody generation for an otherwise non-antigenic peptide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: His-tagged polypeptides bind and functionalize Co-PoP bilayers.
Figure 2: His-tagged protein binding to Co(III)-PoP liposomes.
Figure 3: Robust his-tagged protein binding to Co-PoP liposomes.
Figure 4: Binding of a short his-tagged RGD peptide to Co-PoP liposomes.
Figure 5: RGD-his targeting of cargo-loaded liposomes.
Figure 6: HIV peptide vaccination using immunogenic Co-PoP liposomes.

Similar content being viewed by others

References

  1. Brannon-Peppas, L. & Blanchette, J. O. Nanoparticle and targeted systems for cancer therapy. Adv. Drug Deliv. Rev. 206–212 (2012).

  2. Purcell, A. W., McCluskey, J. & Rossjohn, J. More than one reason to rethink the use of peptides in vaccine design. Nature Rev. Drug Discov. 6, 404–414 (2007).

    Article  CAS  Google Scholar 

  3. Canalle, L. A., Löwik, D. W. P. M. & van Hest, J. C. M. Polypeptide-polymer bioconjugates. Chem. Soc. Rev. 39, 329–353 (2010).

    Article  CAS  Google Scholar 

  4. Nobs, L., Buchegger, F., Gurny, R. & Allémann, E. Current methods for attaching targeting ligands to liposomes and nanoparticles. J. Pharm. Sci. 93, 1980–1992 (2004).

    Article  CAS  Google Scholar 

  5. Algar, W. R. et al. The controlled display of biomolecules on nanoparticles: a challenge suited to bioorthogonal chemistry. Bioconjug. Chem. 22, 825–858 (2011).

    Article  CAS  Google Scholar 

  6. Sapra, P. & Allen, T. M. Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res. 42, 439–462 (2003).

    Article  CAS  Google Scholar 

  7. Kirpotin, D. et al. Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochemistry 36, 66–75 (1997).

    Article  CAS  Google Scholar 

  8. Yang, T. et al. Preparation and evaluation of paclitaxel-loaded PEGylated immunoliposome. J. Control. Release 120, 169–177 (2007).

    Article  CAS  Google Scholar 

  9. Mastrobattista, E., Koning, G. A. & Storm, G. Immunoliposomes for the targeted delivery of antitumor drugs. Adv. Drug Deliv. Rev. 40, 103–127 (1999).

    Article  CAS  Google Scholar 

  10. Said Hassane, F., Frisch, B. & Schuber, F. Targeted liposomes: convenient coupling of ligands to preformed vesicles using ‘click chemistry’. Bioconjug. Chem. 17, 849–854 (2006).

    Article  Google Scholar 

  11. Watson, D. S. & Szoka, F. C. Jr. Role of lipid structure in the humoral immune response in mice to covalent lipid–peptides from the membrane proximal region of HIV-1 gp41. Vaccine 27, 4672–4683 (2009).

    Article  CAS  Google Scholar 

  12. Liang, M. T., Davies, N. M. & Toth, I. Encapsulation of lipopeptides within liposomes: effect of number of lipid chains, chain length and method of liposome preparation. Int. J. Pharm. 301, 247–254 (2005).

    Article  CAS  Google Scholar 

  13. Pihlgren, M. et al. TLR4- and TRIF-dependent stimulation of B lymphocytes by peptide liposomes enables T cell-independent isotype switch in mice. Blood 121, 85–94 (2013).

    Article  CAS  Google Scholar 

  14. Blanco-Canosa, J. B. et al. Recent progress in the bioconjugation of quantum dots. Coord. Chem. Rev. 263–264, 101–137 (2014).

    Article  Google Scholar 

  15. Terpe, K. Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Appl. Microbiol. Biotechnol. 60, 523–533 (2003).

    Article  CAS  Google Scholar 

  16. Arnau, J., Lauritzen, C., Petersen, G. E. & Pedersen, J. Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expres. Purif. 48, 1–13 (2006).

    Article  CAS  Google Scholar 

  17. Kubalek, E. W., Le Grice, S. F. J. & Brown, P. O. Two-dimensional crystallization of histidine-tagged, HIV-1 reverse transcriptase promoted by a novel nickel-chelating lipid. J. Struct. Biol. 113, 117–123 (1994).

    Article  CAS  Google Scholar 

  18. Dorn, I. T., Neumaier, K. R. & Tampé, R. Molecular recognition of histidine-tagged molecules by metal-chelating lipids monitored by fluorescence energy transfer and correlation spectroscopy. J. Am. Chem. Soc. 120, 2753–2763 (1998).

    Article  CAS  Google Scholar 

  19. Hussein, W. M., Ross, B. P., Landsberg, M. J., Hankamer, B. & McGeary, R. P. Synthetic approaches to functionalized lipids for protein monolayer crystallizations. Curr. Org. Chem. 13, 1378–1405 (2009).

    Article  CAS  Google Scholar 

  20. Platt, V. et al. Influence of multivalent nitrilotriacetic acid lipid−ligand affinity on the circulation half-life in mice of a liposome-attached his6-protein. Bioconjug. Chem. 21, 892–902 (2010).

    Article  CAS  Google Scholar 

  21. Rüger, R., Müller, D., Fahr, A. & Kontermann, R. E. In vitro characterization of binding and stability of single-chain Fv Ni-NTA-liposomes. J. Drug Target. 14, 576–582 (2006).

    Article  Google Scholar 

  22. Xie, J., Lee, S. & Chen, X. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 62, 1064–1079 (2010).

    Article  CAS  Google Scholar 

  23. Lovell, J. F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nature Mater. 10, 324–332 (2011).

    Article  CAS  Google Scholar 

  24. Lovell, J. F. et al. Enzymatic regioselection for the synthesis and biodegradation of porphysome nanovesicles. Angew. Chem. Int. Ed. 51, 2429–2433 (2012).

    Article  CAS  Google Scholar 

  25. Carter, K. A. et al. Porphyrin–phospholipid liposomes permeabilized by near-infrared light. Nature Commun. 5, 3546 (2014).

    Article  Google Scholar 

  26. Rieffel, J. et al. Hexamodal imaging with porphyrin–phospholipid-coated upconversion nanoparticles. Adv. Mater. 27, 1785–1790 (2015).

    Article  CAS  Google Scholar 

  27. Pasternack, R. F., Francesconi, L., Raff, D. & Spiro, E. Aggregation of nickel(II), copper(II), and zinc(II) derivatives of water-soluble porphyrins. Inorg. Chem. 12, 2606–2611 (1973).

    Article  CAS  Google Scholar 

  28. Constable, E. C. & Housecroft, C. E. Coordination chemistry: the scientific legacy of Alfred Werner. Chem. Soc. Rev. 42, 1429–1439 (2013).

    Article  CAS  Google Scholar 

  29. Wegner, S. V. & Spatz, J. P. Cobalt(III) as a stable and inert mediator ion between NTA and his6-tagged proteins. Angew. Chem. Int. Ed. 52, 7593–7596 (2013).

    Article  CAS  Google Scholar 

  30. Terekhov, S. N., Galievsky, V. A., Chirvony, V. S. & Turpin, P-Y. Resonance Raman and absorption characterization of cationic Co(II)-porphyrin in its complexes with nucleic acids: binding modes, nucleic base specificity and role of water in Co(II) oxidation processes. J. Raman Spectrosc. 36, 962–973 (2005).

    Article  CAS  Google Scholar 

  31. Ruoslahti, E. Peptides as targeting elements and tissue penetration devices for nanoparticles. Adv. Mater. 24, 3747–3756 (2012).

    Article  CAS  Google Scholar 

  32. Pasqualini, R., Koivunen, E. & Ruoslahti, E. Alpha v integrins as receptors for tumor targeting by circulating ligands. Nature Biotechnol. 15, 542–546 (1997).

    Article  CAS  Google Scholar 

  33. Danhier, F., Breton, A. L. & Préat, V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy and diagnosis. Mol. Pharm. 9, 2961–2973 (2012).

    Article  CAS  Google Scholar 

  34. Bloch, S. et al. Targeting beta-3 integrin using a linear hexapeptide labeled with a near-infrared fluorescent molecular probe. Mol. Pharm. 3, 539–549 (2006).

    Article  CAS  Google Scholar 

  35. Cai, W. et al. Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett. 6, 669–676 (2006).

    Article  CAS  Google Scholar 

  36. Hong, G. et al. Near-infrared-fluorescence-enhanced molecular imaging of live cells on gold substrates. Angew. Chem. Int. Ed. 50, 4644–4648 (2011).

    Article  CAS  Google Scholar 

  37. Janib, S. M., Moses, A. S. & MacKay, J. A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 62, 1052–1063 (2010).

    Article  CAS  Google Scholar 

  38. Sperling, R. A., Gil, P. R., Zhang, F., Zanella, M. & Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 37, 1896–1908 (2008).

    Article  CAS  Google Scholar 

  39. Tam, N. C. M., Scott, B. M. T., Voicu, D., Wilson, B. C. & Zheng, G. Facile synthesis of Raman active phospholipid gold nanoparticles. Bioconjug. Chem. 21, 2178–2182 (2010).

    Article  CAS  Google Scholar 

  40. Zwick, M. B. et al. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus Type 1 glycoprotein gp41. J. Virol. 75, 10892–10905 (2001).

    Article  CAS  Google Scholar 

  41. Zwick, M. B. The membrane-proximal external region of HIV-1 gp41: a vaccine target worth exploring. AIDS 19, 1725–1737 (2005).

    Article  Google Scholar 

  42. Montero, M., van Houten, N. E., Wang, X. & Scott, J. K. The membrane-proximal external region of the human immunodeficiency virus Type 1 envelope: dominant site of antibody neutralization and target for vaccine design. Microbiol. Mol. Biol. Rev. 72, 54–84 (2008).

    Article  CAS  Google Scholar 

  43. Burton, D. R. et al. HIV vaccine design and the neutralizing antibody problem. Nature Immunol. 5, 233–236 (2004).

    Article  CAS  Google Scholar 

  44. Alam, S. M. et al. Role of HIV membrane in neutralization by two broadly neutralizing antibodies. Proc. Natl Acad. Sci. 106, 20234–20239 (2009).

    Article  CAS  Google Scholar 

  45. Matyas, G. R. et al. Neutralizing antibodies induced by liposomal HIV-1 glycoprotein 41 peptide simultaneously bind to both the 2F5 or 4E10 epitope and lipid epitopes. AIDS 23, 2069–2077 (2009).

    Article  CAS  Google Scholar 

  46. Verkoczy, L. et al. Induction of HIV-1 broad neutralizing antibodies in 2f5 knock-in mice: selection against membrane proximal external region–associated autoreactivity limits T-dependent responses. J. Immunol. 191, 2538–2550 (2013).

    Article  CAS  Google Scholar 

  47. Watson, D. S., Platt, V. M., Cao, L., Venditto, V. J. & Szoka, F. C. Antibody response to polyhistidine-tagged peptide and protein antigens attached to liposomes via lipid-linked nitrilotriacetice acid in mice. Clin. Vaccine Immunol. 18, 289–297 (2011).

    Article  CAS  Google Scholar 

  48. Dayananda, K. M., Gogia, S. & Neelamegham, S. Escherichia coli-derived von Willebrand factor-A2 domain fluorescence/Förster resonance energy transfer proteins that quantify ADAMTS13 activity. Anal. Biochem. 410, 206–213 (2011).

    Article  CAS  Google Scholar 

  49. Yi, H. A., Diaz-Aguilar, B., Bridon, D., Quraishi, O. & Jacobs, A. Permanent inhibition of viral entry by covalent entrapment of HIV gp41 on the virus surface. Biochemistry 50, 6966–6972 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank J. R. Morrow and R. B. Bankert for valuable discussions, A. Siegel for assistance with confocal microscopy and the NIH AIDS Reagent Program. This work was supported by grants from the National Institutes of Health (R01EB017270, DP5OD017898 and HL77258).

Author information

Authors and Affiliations

Authors

Contributions

S.G. and S.N. designed and produced the his-tagged fluorescence protein reporter. S.S. performed the synthesis, chemical characterization, binding, targeting and immunization experiments. J.G. led the animal experiments. A.J. and H.A.Y. carried out the HIV entry inhibition experiments. S.S. and J.F.L. conceived the project, interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Jonathan F. Lovell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shao, S., Geng, J., Ah Yi, H. et al. Functionalization of cobalt porphyrin–phospholipid bilayers with his-tagged ligands and antigens. Nature Chem 7, 438–446 (2015). https://doi.org/10.1038/nchem.2236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.2236

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research