Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Homeostatic control of recombination is implemented progressively in mouse meiosis

Abstract

Humans suffer from high rates of fetal aneuploidy, often arising from the absence of meiotic crossover recombination between homologous chromosomes1. Meiotic recombination is initiated by double-strand breaks (DSBs) generated by the SPO11 transesterase2. In yeast and worms, at least one buffering mechanism, crossover homeostasis, maintains crossover numbers despite variation in DSB numbers3,4,5,6,7,8. We show here that mammals exhibit progressive homeostatic control of recombination. In wild-type mouse spermatocytes, focus numbers for early recombination proteins (RAD51, DMC1) were highly variable from cell to cell, whereas foci of the crossover marker MLH1 showed little variability. Furthermore, mice with greater or fewer copies of the Spo11 gene—with correspondingly greater or fewer numbers of early recombination foci—exhibited relatively invariant crossover numbers. Homeostatic control is enforced during at least two stages, after the formation of early recombination intermediates and later while these intermediates mature towards crossovers. Thus, variability within the mammalian meiotic program is robustly managed by homeostatic mechanisms to control crossover formation, probably to suppress aneuploidy. Meiotic recombination exemplifies how order can be progressively implemented in a self-organizing system despite natural cell-to-cell disparities in the underlying biochemical processes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Cell-to-cell variability in numbers of recombination intermediates decreases as meiotic prophase progresses.
Figure 2: Spo11 locus number modulates early recombination indicators but not crossover numbers.
Figure 3: Changes in numbers of recombination-associated foci as meiosis progresses.
Figure 4: Cytological interference is unchanged despite decreased or increased early recombination intermediates.

Similar content being viewed by others

References

  1. Hassold, T., Hall, H. & Hunt, P. The origin of human aneuploidy: where we have been, where we are going. Hum. Mol. Genet. 16 (Spec No. 2), R203–R208 (2007).

    Article  CAS  Google Scholar 

  2. Keeney, S. in Recombination and Meiosis (eds Egel, R. & Lankenau, D-H.) 81–123 (Springer, 2007).

    Google Scholar 

  3. Chen, S. Y. et al. Global analysis of the meiotic crossover landscape. Dev. Cell 15, 401–415 (2008).

    Article  CAS  Google Scholar 

  4. Hillers, K. J. & Villeneuve, A. M. Chromosome-wide control of meiotic crossing over in C. elegans. Curr. Biol. 13, 1641–1647 (2003).

    Article  CAS  Google Scholar 

  5. Martini, E., Diaz, R. L., Hunter, N. & Keeney, S. Crossover homeostasis in yeast meiosis. Cell 126, 285–295 (2006).

    Article  CAS  Google Scholar 

  6. Roig, I. & Keeney, S. Probing meiotic recombination decisions. Dev. Cell 15, 331–332 (2008).

    Article  CAS  Google Scholar 

  7. Youds, J. L. et al. RTEL-1 enforces meiotic crossover interference and homeostasis. Science 327, 1254–1258 (2010).

    Article  CAS  Google Scholar 

  8. Rosu, S., Libuda, D. E. & Villeneuve, A. M. Robust crossover assurance and regulated interhomolog access maintain meiotic crossover number. Science 334, 1286–1289 (2011).

    Article  CAS  Google Scholar 

  9. Jones, G. H. & Franklin, F. C. Meiotic crossing-over: obligation and interference. Cell 126, 246–248 (2006).

    Article  CAS  Google Scholar 

  10. Cohen, P. E., Pollack, S. E. & Pollard, J. W. Genetic analysis of chromosome pairing, recombination, and cell cycle control during first meiotic prophase in mammals. Endocr. Rev. 27, 398–426 (2006).

    Article  CAS  Google Scholar 

  11. Anderson, L. K., Reeves, A., Webb, L. M. & Ashley, T. Distribution of crossing over on mouse synaptonemal complexes using immunofluorescent localization of MLH1 protein. Genetics 151, 1569–1579 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Holloway, J. K., Booth, J., Edelmann, W., McGowan, C. H. & Cohen, P. E. MUS81 generates a subset of MLH1-MLH3-independent crossovers in mammalian meiosis. PLoS Genet. 4, e1000186 (2008).

    Article  Google Scholar 

  13. Baudat, F., Manova, K., Yuen, J. P., Jasin, M. & Keeney, S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol. Cell 6, 989–998 (2000).

    Article  CAS  Google Scholar 

  14. Kauppi, L. et al. Distinct properties of the XY pseudoautosomal region crucial for male meiosis. Science 331, 916–920 (2011).

    Article  CAS  Google Scholar 

  15. Mahadevaiah, S. K. et al. Recombinational DNA double-strand breaks in mice precede synapsis. Nat. Genet. 27, 271–276 (2001).

    Article  CAS  Google Scholar 

  16. Larocque, J. R. & Jasin, M. Mechanisms of recombination between diverged sequences in wild-type and BLM-deficient mouse and human cells. Mol. Cell Biol. 30, 1887–1897 (2010).

    Article  CAS  Google Scholar 

  17. Zhang, L., Kleckner, N. E., Storlazzi, A. & Kim, K. P. Meiotic double-strand breaks occur once per pair of (sister) chromatids and, via Mec1/ATR and Tel1/ATM, once per quartet of chromatids. Proc. Natl Acad. Sci. USA 108, 20036–20041 (2011).

    Article  CAS  Google Scholar 

  18. Kleckner, N. et al. A mechanical basis for chromosome function. Proc. Natl Acad. Sci. USA 101, 12592–12597 (2004).

    Article  CAS  Google Scholar 

  19. Stahl, F. W. & Foss, H. M. A two-pathway analysis of meiotic crossing over and gene conversion in Saccharomyces cerevisiae. Genetics 186, 515–536 (2010).

    Article  CAS  Google Scholar 

  20. de Boer, E., Stam, P., Dietrich, A. J., Pastink, A. & Heyting, C. Two levels of interference in mouse meiotic recombination. Proc. Natl Acad. Sci. USA 103, 9607–9612 (2006).

    Article  CAS  Google Scholar 

  21. Cole, F., Keeney, S. & Jasin, M. Evolutionary conservation of meiotic DSB proteins: more than just Spo11. Genes Dev. 24, 1201–1207 (2010).

    Article  CAS  Google Scholar 

  22. Mancera, E., Bourgon, R., Brozzi, A., Huber, W. & Steinmetz, L. M. High-resolution mapping of meiotic crossovers and non-crossovers in yeast. Nature 454, 479–485 (2008).

    Article  CAS  Google Scholar 

  23. Dernburg, A. F. et al. Meiotic recombination in C. elegans initiates by a conserved mechanism and is dispensable for homologous chromosome synapsis. Cell 94, 387–398 (1998).

    Article  CAS  Google Scholar 

  24. Barchi, M. et al. ATM promotes the obligate XY crossover and both crossover control and chromosome axis integrity on autosomes. PLoS Genet. 4, e1000076 (2008).

    Article  Google Scholar 

  25. Lange, J. et al. ATM controls meiotic double-strand-break formation. Nature 479, 237–240 (2011).

    Article  CAS  Google Scholar 

  26. Goldfarb, T. & Lichten, M. Frequent and efficient use of the sister chromatid for DNA double-strand break repair during budding yeast meiosis. PLoS Biol. 8, e1000520 (2010).

    Article  Google Scholar 

  27. Mets, D. G. & Meyer, B. J. Condensins regulate meiotic DNA break distribution, thus crossover frequency, by controlling chromosome structure. Cell 139, 73–86 (2009).

    Article  CAS  Google Scholar 

  28. Cole, F., Keeney, S. & Jasin, M. Comprehensive, fine-scale dissection of homologous recombination outcomes at a hot spot in mouse meiosis. Mol. Cell 39, 700–710 (2010).

    Article  CAS  Google Scholar 

  29. Coop, G., Wen, X., Ober, C., Pritchard, J. K. & Przeworski, M. High-resolution mapping of crossovers reveals extensive variation in fine-scale recombination patterns among humans. Science 319, 1395–1398 (2008).

    Article  CAS  Google Scholar 

  30. Baker, S. M. et al. Involvement of mouse Mlh1 in DNA mismatch repair and meiotic crossing over. Nat. Genet. 13, 336–342 (1996).

    Article  CAS  Google Scholar 

  31. de Boer, E., Dietrich, A. J., Hoog, C., Stam, P. & Heyting, C. Meiotic interference among MLH1 foci requires neither an intact axial element structure nor full synapsis. J. Cell Sci. 120, 731–736 (2007).

    Article  CAS  Google Scholar 

  32. Koehler, K. E., Schrump, S. E., Cherry, J. P., Hassold, T. J. & Hunt, P. A. Near-human aneuploidy levels in female mice with homeologous chromosomes. Curr. Biol. 16, R579–R580 (2006).

    Article  CAS  Google Scholar 

  33. Ferguson, K. A., Leung, S., Jiang, D. & Ma, S. Distribution of MLH1 foci and inter-focal distances in spermatocytes of infertile men. Hum. Reprod. 24, 1313–1321 (2009).

    Article  CAS  Google Scholar 

  34. Lenzi, M. L. et al. Extreme heterogeneity in the molecular events leading to the establishment of chiasmata during meiosis i in human oocytes. Am. J. Hum. Genet. 76, 112–127 (2005).

    Article  CAS  Google Scholar 

  35. Bellani, M. A., Boateng, K. A., McLeod, D. & Camerini-Otero, R. D. The expression profile of the major mouse SPO11 isoforms indicates that SPO11β introduces double strand breaks and suggests that SPO11α has an additional role in prophase in both spermatocytes and oocytes. Mol. Cell Biol. 30, 4391–4403 (2010).

    Article  CAS  Google Scholar 

  36. Heyting, C. & Dietrich, A. J. Meiotic chromosome preparation and protein labeling. Methods Cell Biol. 35, 177–202 (1991).

    Article  CAS  Google Scholar 

  37. Dray, E. et al. Molecular basis for enhancement of the meiotic DMC1 recombinase by RAD51 associated protein 1 (RAD51AP1). Proc. Natl Acad. Sci. USA 108, 3560–3565 (2011).

    Article  CAS  Google Scholar 

  38. Roig, I. et al. Mouse TRIP13/PCH2 is required for recombination and normal higher-order chromosome structure during meiosis. PLoS Genet. 6, e1001062 (2010).

    Article  Google Scholar 

  39. Neale, M. J., Pan, J. & Keeney, S. Endonucleolytic processing of covalent protein-linked DNA double-strand breaks. Nature 436, 1053–1057 (2005).

    Article  CAS  Google Scholar 

  40. Cohen, J. Statistical Power Analysis for the Behavioral Sciences 2nd edn (Lawrence Erlbaum Associates, Inc., 1988).

    Google Scholar 

Download references

Acknowledgements

We thank present and past members of the Jasin and Keeney laboratories for helpful discussions. F.C. was supported by a Ruth L. Kirschstein NRSA (F32HD51392). S.K. is an Investigator of the Howard Hughes Medical Institute. This work was supported by NIH grant HD040916 (to M.J. and S.K.).

Author information

Authors and Affiliations

Authors

Contributions

F.C., S.K. and M.J. designed the experiments. F.C., L.K., J.L., I.R. and R.W. carried out experiments. F.C., S.K. and M.J. wrote the paper.

Corresponding authors

Correspondence to Scott Keeney or Maria Jasin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 541 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cole, F., Kauppi, L., Lange, J. et al. Homeostatic control of recombination is implemented progressively in mouse meiosis. Nat Cell Biol 14, 424–430 (2012). https://doi.org/10.1038/ncb2451

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2451

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing