Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death

Abstract

Accumulating evidence suggests that deregulated cyclin-dependent kinase 5 (Cdk5) plays a critical part in neuronal death. However, the pathogenic targets of Cdk5 are not fully defined. Here we demonstrate that the Cdk5 activator p35 interacts directly with apurinic/apyrimidinic endonuclease 1 (Ape1), a protein crucial for base excision repair (BER) following DNA damage. Cdk5 complexes phosphorylate Ape1 at Thr 232 and thereby reduces its apurinic/apyrimidinic (AP) endonuclease activity. Ape1 phosphorylation is dependent on Cdk5 in in vitro and in vivo. The reduced endonuclease activity of phosphorylated Ape1 results in accumulation of DNA damage and contributes to neuronal death. Overexpression of Ape1WT and Ape1T232A, but not the phosphorylation mimic Ape1T232E, protects neurons against MPP+/MPTP. Loss of Ape1 sensitizes neurons to death. Importantly, increased phosphorylated Ape1 was also observed in post-mortem brain tissue from patients with Parkinson's and Alzheimer's diseases, suggesting a potential link between Ape1 phosphorylation and the pathogenesis of neurodegenerative diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Identification of interaction between Cdk5/p35 and Ape1 in vitro.
Figure 2: The effect of Cdk5-mediated phosphorylation of Ape1 and its mutants on AP endonuclease activity in vitro.
Figure 3: Induction of Ape1 phosphorylation at Thr 232 in MPP+-treated neurons.
Figure 4: The role of Ape1 phosphorylation at Thr 232 in MPP+-treated neurons.
Figure 5: The role of Ape1 phosphorylation at Thr 232 in MPTP–injected mice and mediated by Cdk5.
Figure 6: Ape1 phosphorylation at Thr 232 is increased in human Parkinson's disease and Alzheimer's disease.

Similar content being viewed by others

References

  1. Lew, J., Beaudette, K., Litwin, C. M. & Wang, J. H. Purification and characterization of a novel proline-directed protein kinase from bovine brain. J. Biol. Chem. 267, 13383–13390 (1992).

    CAS  PubMed  Google Scholar 

  2. Meyerson, M. et al. A family of human cdc2-related protein kinases. EMBO J. 11, 2909–2917 (1992).

    Article  CAS  Google Scholar 

  3. Smith, P. D. et al. Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J. Neurosci. 26, 440–447 (2006).

    Article  CAS  Google Scholar 

  4. Smith, P. D. et al. Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson's disease. Proc. Natl Acad. Sci USA 100, 13650–13655 (2003).

    Article  CAS  Google Scholar 

  5. Gong, X. et al. Cdk5-mediated inhibition of the protective effects of transcription factor MEF2 in neurotoxicity-induced apoptosis. Neuron 38, 33–46 (2003).

    Article  CAS  Google Scholar 

  6. Tang, X. et al. Cyclin-dependent kinase 5 mediates neurotoxin-induced degradation of the transcription factor myocyte enhancer factor 2. J. Neurosci. 25, 4823–4834 (2005).

    Article  CAS  Google Scholar 

  7. Tian, B., Yang, Q. & Mao, Z. Phosphorylation of ATM by Cdk5 mediates DNA damage signalling and regulates neuronal death. Nature Cell Biol. 11, 211–218 (2009).

    Article  CAS  Google Scholar 

  8. Patrick, G. N. et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402, 615–622 (1999).

    Article  CAS  Google Scholar 

  9. Cruz, J. C. & Tsai, L. H. Cdk5 deregulation in the pathogenesis of Alzheimer's disease. Trends Mol. Med. 10, 452–458 (2004).

    Article  CAS  Google Scholar 

  10. Sun, K. H. et al. Novel genetic tools reveal Cdk5's major role in Golgi fragmentation in Alzheimer's disease. Mol. Biol. Cell 19, 3052–3069 (2008).

    Article  CAS  Google Scholar 

  11. Qu, D. et al. Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson's disease. Neuron 55, 37–52 (2007).

    Article  CAS  Google Scholar 

  12. Crocker, S. J. et al. Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson's disease. J. Neurosci. 23, 4081–4091 (2003).

    Article  CAS  Google Scholar 

  13. Evans, A. R., Limp-Foster, M. & Kelley, M. R. Going APE over ref-1. Mutat. Res. 461, 83–108 (2000).

    Article  CAS  Google Scholar 

  14. Tell, G., Damante, G., Caldwell, D. & Kelley, M. R. The intracellular localization of APE1/Ref-1: more than a passive phenomenon? Antioxid. Redox Signal. 7, 367–384 (2005).

    Article  CAS  Google Scholar 

  15. Fishel, M. L. & Kelley, M. R. The DNA base excision repair protein Ape1/Ref-1 as a therapeutic and chemopreventive target. Mol. Aspects Med. 28, 375–395 (2007).

    Article  CAS  Google Scholar 

  16. Fan, Z. et al. Cleaving the oxidative repair protein Ape1 enhances cell death mediated by granzyme A. Nature Immunol. 4, 145–153 (2003).

    Article  CAS  Google Scholar 

  17. Fung, H. & Demple, B. A vital role for Ape1/Ref1 protein in repairing spontaneous DNA damage in human cells. Mol. Cell 17, 463–470 (2005).

    Article  CAS  Google Scholar 

  18. Jiang, Y., Guo, C., Vasko, M. R. & Kelley, M. R. Implications of apurinic/apyrimidinic endonuclease in reactive oxygen signaling response after cisplatin treatment of dorsal root ganglion neurons. Cancer Res. 68, 6425–6434 (2008).

    Article  CAS  Google Scholar 

  19. Deganuto, M. et al. Altered intracellular redox status in Gaucher disease fibroblasts and impairment of adaptive response against oxidative stress. J. Cell Physiol. 212, 223–235 (2007).

    Article  CAS  Google Scholar 

  20. Xanthoudakis, S., Smeyne, R. J., Wallace, J. D. & Curran, T. The redox/DNA repair protein, Ref-1, is essential for early embryonic development in mice. Proc. Natl Acad. Sci. USA 93, 8919–8923 (1996).

    Article  CAS  Google Scholar 

  21. Hallows, J. L., Chen, K., DePinho, R. A. & Vincent, I. Decreased cyclin-dependent kinase 5 (cdk5) activity is accompanied by redistribution of cdk5 and cytoskeletal proteins and increased cytoskeletal protein phosphorylation in p35 null mice. J. Neurosci. 23, 10633–10644 (2003).

    Article  CAS  Google Scholar 

  22. Nakamura, J. et al. Highly sensitive apurinic/apyrimidinic site assay can detect spontaneous and chemically induced depurination under physiological conditions. Cancer Res. 58, 222–225 (1998).

    CAS  PubMed  Google Scholar 

  23. Horton, J. K., Prasad, R., Hou, E. & Wilson, S. H. Protection against methylation-induced cytotoxicity by DNA polymerase β-dependent long patch base excision repair. J. Biol. Chem. 275, 2211–2218 (2000).

    Article  CAS  Google Scholar 

  24. Madhusudan, S. et al. Isolation of a small molecule inhibitor of DNA base excision repair. Nucleic Acids Res. 33, 4711–4724 (2005).

    Article  CAS  Google Scholar 

  25. Crocker, S. J. et al. Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson's disease. J. Neurosci. 23, 4081–4091 (2003).

    Article  CAS  Google Scholar 

  26. Crocker, S. J. et al. c-Jun mediates axotomy-induced dopamine neuron death in vivo. Proc. Natl Acad. Sci. USA 98, 13385–13390 (2001).

    Article  CAS  Google Scholar 

  27. Kim, R. H. et al. Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyrindine (MPTP) and oxidative stress. Proc. Natl Acad. Sci. USA 102, 5215–5220 (2005).

    Article  CAS  Google Scholar 

  28. Kalia, S. K. et al. BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron 44, 931–945 (2004).

    Article  CAS  Google Scholar 

  29. Kulkarni, A. & Wilson, D. M., 3rd The involvement of DNA-damage and -repair defects in neurological dysfunction. Am. J. Hum. Genet. 82, 539–566 (2008).

    Article  CAS  Google Scholar 

  30. Subba Rao, K. Mechanisms of disease: DNA repair defects and neurological disease. Nature Clin. Pract. Neurol. 3, 162–172 (2007).

    Article  Google Scholar 

  31. Guillet, M. & Boiteux, S. Endogenous DNA abasic sites cause cell death in the absence of Apn1, Apn2 and Rad1/Rad10 in Saccharomyces cerevisiae. EMBO J. 21, 2833–2841 (2002).

    Article  CAS  Google Scholar 

  32. Jung, H. J. et al. Base excision DNA repair defect in Gadd45a-deficient cells. Oncogene 26, 7517–7525 (2007).

    Article  CAS  Google Scholar 

  33. Fung, H., Liu, P. & Demple, B. ATF4-dependent oxidative induction of the DNA repair enzyme Ape1 counteracts arsenite cytotoxicity and suppresses arsenite-mediated mutagenesis. Mol. Cell Biol. 27, 8834–8847 (2007).

    Article  CAS  Google Scholar 

  34. Anne, S. L., Saudou, F. & Humbert, S. Phosphorylation of huntingtin by cyclin-dependent kinase 5 is induced by DNA damage and regulates wild-type and mutant huntingtin toxicity in neurons. J. Neurosci. 27, 7318–7328 (2007).

    Article  CAS  Google Scholar 

  35. Kim, D. et al. Deregulation of HDAC1 by p25/Cdk5 in neurotoxicity. Neuron 60, 803–817 (2008).

    Article  CAS  Google Scholar 

  36. Lee, J. H., Kim, H. S., Lee, S. J. & Kim, K. T. Stabilization and activation of p53 induced by Cdk5 contributes to neuronal cell death. J. Cell Sci. 120, 2259–2271 (2007).

    Article  CAS  Google Scholar 

  37. Lee, M. S. et al. Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405, 360–364 (2000).

    Article  CAS  Google Scholar 

  38. Tsai, L. H., Lee, M. S. & Cruz, J. Cdk5, a therapeutic target for Alzheimer's disease? Biochim. Biophys. Acta 1697, 137–142 (2004).

    Article  CAS  Google Scholar 

  39. Chen, T. S., Koutsilieri, E. & Rausch, W. D. MPP+ selectively affects calcium homeostasis in mesencephalic cell cultures from embryonal C57/Bl6 mice. J. Neural. Transm. Gen. Sect. 100, 153–163 (1995).

    Article  CAS  Google Scholar 

  40. Rudolph, J. Inhibiting transient protein-protein interactions: lessons from the Cdc25 protein tyrosine phosphatases. Nature Rev. Cancer 7, 202–211 (2007).

    Article  CAS  Google Scholar 

  41. Maly, D. J., Allen, J. A. & Shokat, K. M. A mechanism-based cross-linker for the identification of kinase-substrate pairs. J. Am. Chem. Soc. 12 6, 9160–9161 (2004).

    Article  Google Scholar 

  42. Nakamura, S., Kawamoto, Y., Nakano, S., Akiguchi, I. & Kimura, J. p35nck5a and cyclin-dependent kinase 5 colocalize in Lewy bodies of brains with Parkinson's disease. Acta Neuropathol. 94, 153–157 (1997).

    Article  CAS  Google Scholar 

  43. Smith, D. S., Greer, P. L. & Tsai, L. H. Cdk5 on the brain. Cell Growth Differ. 12, 277–283 (2001).

    CAS  PubMed  Google Scholar 

  44. He, T. C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl Acad. Sci. USA 95, 2509–2514 (1998).

    Article  CAS  Google Scholar 

  45. Qu, D. et al. The protein SET binds the neuronal Cdk5 activator p35nck5a and modulates Cdk5/p35nck5a activity. J. Biol. Chem. 277, 7324–7332 (2002).

    Article  CAS  Google Scholar 

  46. Vasko, M. R., Guo, C. & Kelley, M. R. The multifunctional DNA repair/redox enzyme Ape1/Ref-1 promotes survival of neurons after oxidative stress. DNA Repair 4, 367–379 (2005).

    Article  CAS  Google Scholar 

  47. Robertson, K. A. et al. Altered expression of Ape1/ref-1 in germ cell tumors and overexpression in NT2 cells confers resistance to bleomycin and radiation. Cancer Res. 61, 2220–2225 (2001).

    CAS  PubMed  Google Scholar 

  48. Xiang, H. et al. Evidence for p53-mediated modulation of neuronal viability. J. Neurosci. 16, 6753–6765 (1996).

    Article  CAS  Google Scholar 

  49. Fortin, A. et al. APAF1 is a key transcriptional target for p53 in the regulation of neuronal cell death. J. Cell Biol. 155, 207–216 (2001).

    Article  CAS  Google Scholar 

  50. Haque, M. E. et al. Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc. Natl Acad. Sci. USA 105, 1716–1721 (2008).

    Article  CAS  Google Scholar 

  51. Zhang, Y. et al. The Chk1/Cdc25A pathway as activators of the cell cycle in neuronal death induced by camptothecin. J. Neurosci. 26, 8819–8828 (2006).

    Article  CAS  Google Scholar 

  52. Keramaris, E. et al. Required roles of Bax and JNKs in central and peripheral nervous system death of retinoblastoma-deficient mice. J. Biol. Chem. 283, 405–415 (2008).

    Article  CAS  Google Scholar 

  53. Aleyasin, H. et al. Nuclear factor-κB modulates the p53 response in neurons exposed to DNA damage. J. Neurosci. 24, 2963–2973 (2004).

    Article  CAS  Google Scholar 

  54. Sedarous, M. et al. Calpains mediate p53 activation and neuronal death evoked by DNA damage. J. Biol. Chem. 278, 26031–26038 (2003).

    Article  CAS  Google Scholar 

  55. Martins, A. R. et al. Microwave-stimulated recovery of myosin-V immunoreactivity from formalin-fixed, paraffin-embedded human CNS. J. Neurosci. Methods 92, 25–29 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Parkinson Society Canada (E.H., D.Q.); by the Heart and Stroke Foundation of Ontario (M.W.C.R); and by funds from the Canadian Institutes of Health Research, Parkinson Society Canada, Parkinson's Disease Foundation, Parkinson Research Consortium, Heart and Stroke Foundation of Ontario, Brain Repair Program-Neuroscience Canada, and World Class University Program, National Research Foundation, Ministry of Education, Science & Technology, South Korea, Grant (R31-2008-000-20009-0) (D.S.P.). D.S.P. is a Heart and Stroke Foundation of Ontario career investigator.

Author information

Authors and Affiliations

Authors

Contributions

E.H., Q.D., R.S.S., D.S.P. designed the studies; E.H. and D.Q. performed most of the experimental work; Y.Z., K.V., M. E. H. and M.W.C.R. provided technical support;. J. M. W. provided post-mortem Parkinson's disease and Alzheimer's disease samples and analyses; E.H., Q.D. and D.S.P. analysed data and wrote the manuscript; D.S.P supervised the project.

Corresponding author

Correspondence to David S. Park.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2003 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, E., Qu, D., Zhang, Y. et al. The role of Cdk5-mediated apurinic/apyrimidinic endonuclease 1 phosphorylation in neuronal death. Nat Cell Biol 12, 563–571 (2010). https://doi.org/10.1038/ncb2058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ncb2058

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing