Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A neuron–glia interaction involving GABA transaminase contributes to sleep loss in sleepless mutants

Abstract

Sleep is an essential process and yet mechanisms underlying it are not well understood. Loss of the Drosophila quiver/sleepless (qvr/sss) gene increases neuronal excitability and diminishes daily sleep, providing an excellent model for exploring the underpinnings of sleep regulation. Here, we used a proteomic approach to identify proteins altered in sss brains. We report that loss of sleepless post-transcriptionally elevates the CG7433 protein, a mitochondrial γ-aminobutyric acid transaminase (GABAT), and reduces GABA in fly brains. Loss of GABAT increases daily sleep and improves sleep consolidation, indicating that GABAT promotes wakefulness. Importantly, disruption of the GABAT gene completely suppresses the sleep phenotype of sss mutants, demonstrating that GABAT is required for loss of sleep in sss mutants. While SSS acts in distinct populations of neurons, GABAT acts in glia to reduce sleep in sss flies. Our results identify a novel mechanism of interaction between neurons and glia that is important for the regulation of sleep.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Spiegelhalder K, Regen W, Nanovska S, Baglioni C, Riemann D . Comorbid sleep disorders in neuropsychiatric disorders across the life cycle. Curr Psychiatry Rep 2013; 15: 364.

    Article  Google Scholar 

  2. Saper CB, Fuller PM, Pedersen NP, Lu J, Scammell TE . Sleep state switching. Neuron 2010; 68: 1023–1042.

    Article  CAS  Google Scholar 

  3. Koh K, Joiner WJ, Wu MN, Yue Z, Smith CJ, Sehgal A . Identification of SLEEPLESS, a sleep-promoting factor. Science 2008; 321: 372–376.

    Article  CAS  Google Scholar 

  4. Wang JW, Humphreys JM, Phillips JP, Hilliker AJ, Wu CF . A novel leg-shaking Drosophila mutant defective in a voltage-gated K(+)current and hypersensitive to reactive oxygen species. J Neurosci 2000; 20: 5958–5964.

    Article  CAS  Google Scholar 

  5. Wu MN, Joiner WJ, Dean T, Yue Z, Smith CJ, Chen D et al SLEEPLESS, a Ly-6/neurotoxin family member, regulates the levels, localization and activity of Shaker. Nat Neurosci 2010; 13: 69–75.

    Article  CAS  Google Scholar 

  6. Dean T, Xu R, Joiner W, Sehgal A, Hoshi T . Drosophila QVR/SSS modulates the activation and C-type inactivation kinetics of Shaker K(+) channels. J Neurosci 2011; 31: 11387–11395.

    Article  CAS  Google Scholar 

  7. Cirelli C, Bushey D, Hill S, Huber R, Kreber R, Ganetzky B et al Reduced sleep in Drosophila Shaker mutants. Nature 2005; 434: 1087–1092.

    Article  CAS  Google Scholar 

  8. Sherif FM, Ahmed SS . Basic aspects of GABA-transaminase in neuropsychiatric disorders. Clin Biochem 1995; 28: 145–154.

    Article  CAS  Google Scholar 

  9. Bischof J, Maeda RK, Hediger M, Karch F, Basler K . An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA 2007; 104: 3312–3317.

    Article  CAS  Google Scholar 

  10. Gilestro GF, Cirelli C . pySolo: a complete suite for sleep analysis in Drosophila. Bioinformatics 2009; 25: 1466–1467.

    Article  CAS  Google Scholar 

  11. Marouga R, David S, Hawkins E . The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 2005; 382: 669–678.

    Article  CAS  Google Scholar 

  12. Williams JA, Su HS, Bernards A, Field J, Sehgal A . A circadian output in Drosophila mediated by neurofibromatosis-1 and Ras/MAPK. Science 2001; 293: 2251–2256.

    Article  CAS  Google Scholar 

  13. Minden JS, Dowd SR, Meyer HE, Stuhler K . Difference gel electrophoresis. Electrophoresis 2009; 30: S156–S161.

    Article  Google Scholar 

  14. Chintapalli VR, Wang J, Dow JA . Using FlyAtlas to identify better Drosophila melanogaster models of human disease. Nat Genet 2007; 39: 715–720.

    Article  CAS  Google Scholar 

  15. Beckervordersandforth RM, Rickert C, Altenhein B, Technau GM . Subtypes of glial cells in the Drosophila embryonic ventral nerve cord as related to lineage and gene expression. Mech Dev 2008; 125: 542–557.

    Article  CAS  Google Scholar 

  16. Claros MG, Vincens P . Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem 1996; 241: 779–786.

    Article  CAS  Google Scholar 

  17. Storici P, De Biase D, Bossa F, Bruno S, Mozzarelli A, Peneff C et al Structures of gamma-aminobutyric acid (GABA) aminotransferase, a pyridoxal 5′-phosphate, and [2Fe-2S] cluster-containing enzyme, complexed with gamma-ethynyl-GABA and with the antiepilepsy drug vigabatrin. J Biol Chem 2004; 279: 363–373.

    Article  CAS  Google Scholar 

  18. Hacker U, Nystedt S, Barmchi MP, Horn C, Wimmer EA . piggyBac-based insertional mutagenesis in the presence of stably integrated P elements in Drosophila. Proc Natl Acad Sci USA 2003; 100: 7720–7725.

    Article  Google Scholar 

  19. Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM et al A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet 2004; 36: 283–287.

    Article  CAS  Google Scholar 

  20. Parisky KM, Agosto J, Pulver SR, Shang Y, Kuklin E, Hodge JJ et al PDF cells are a GABA-responsive wake-promoting component of the Drosophila sleep circuit. Neuron 2008; 60: 672–682.

    Article  CAS  Google Scholar 

  21. Agosto J, Choi JC, Parisky KM, Stilwell G, Rosbash M, Griffith LC . Modulation of GABAA receptor desensitization uncouples sleep onset and maintenance in Drosophila. Nat Neurosci 2008; 11: 354–359.

    Article  CAS  Google Scholar 

  22. Chung BY, Kilman VL, Keath JR, Pitman JL, Allada R . The GABA(A) receptor RDL acts in peptidergic PDF neurons to promote sleep in Drosophila. Curr Biol 2009; 19: 386–390.

    Article  CAS  Google Scholar 

  23. Andretic R, Shaw PJ . Essentials of sleep recordings in Drosophila: moving beyond sleep time. Methods Enzymol 2005; 393: 759–772.

    Article  Google Scholar 

  24. Shaw PJ, Tononi G, Greenspan RJ, Robinson DF . Stress response genes protect against lethal effects of sleep deprivation in Drosophila. Nature 2002; 417: 287–291.

    Article  CAS  Google Scholar 

  25. Dahdal D, Reeves DC, Ruben M, Akabas MH, Blau J . Drosophila pacemaker neurons require g protein signaling and GABAergic inputs to generate twenty-four hour behavioral rhythms. Neuron 2010; 68: 964–977.

    Article  CAS  Google Scholar 

  26. Fowler LJ, John RA . Active-site-directed irreversible inhibition of rat brain 4-aminobutyrate aminotransferase by ethanolamine O-sulphate in vitro and in vivo. Biochem J 1972; 130: 569–573.

    Article  CAS  Google Scholar 

  27. Kume K, Kume S, Park SK, Hirsh J, Jackson FR . Dopamine is a regulator of arousal in the fruit fly. J Neurosci 2005; 25: 7377–7384.

    Article  CAS  Google Scholar 

  28. Ge S, Pradhan DA, Ming GL, Song H . GABA sets the tempo for activity-dependent adult neurogenesis. Trends Neurosci 2007; 30: 1–8.

    Article  Google Scholar 

  29. Ng M, Roorda RD, Lima SQ, Zemelman BV, Morcillo P, Miesenbock G . Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 2002; 36: 463–474.

    Article  CAS  Google Scholar 

  30. Fei H, Chow DM, Chen A, Romero-Calderon R, Ong WS, Ackerson LC et al Mutation of the Drosophila vesicular GABA transporter disrupts visual figure detection. J Exp Biol 2010; 213: 1717–1730.

    Article  CAS  Google Scholar 

  31. Knowles-Barley S, Longair M, Armstrong JD . BrainTrap: a database of 3D protein expression patterns in the Drosophila brain. Database (Oxford) 2010; 2010: baq005.

    Article  Google Scholar 

  32. Belelli D, Peden DR, Rosahl TW, Wafford KA, Lambert JJ . Extrasynaptic GABAA receptors of thalamocortical neurons: a molecular target for hypnotics. J Neurosci 2005; 25: 11513–11520.

    Article  CAS  Google Scholar 

  33. Thimgan MS, Berg JS, Stuart AE . Comparative sequence analysis and tissue localization of members of the SLC6 family of transporters in adult Drosophila melanogaster. J Exp Biol 2006; 209: 3383–3404.

    Article  CAS  Google Scholar 

  34. Crow JM . Insomnia: chasing the dream. Nature 2013; 497: S16–S18.

    Article  CAS  Google Scholar 

  35. Yogeeswari P, Sriram D, Vaigundaragavendran J . The GABA shunt: an attractive and potential therapeutic target in the treatment of epileptic disorders. Curr Drug Metab 2005; 6: 127–139.

    Article  CAS  Google Scholar 

  36. Wong CG, Bottiglieri T, Snead OC III . GABA, gamma-hydroxybutyric acid, and neurological disease. Ann Neurol 2003; 54: S3–12.

    Article  CAS  Google Scholar 

  37. O'Malley DM, Sandell JH, Masland RH . Co-release of acetylcholine and GABA by the starburst amacrine cells. J Neurosci 1992; 12: 1394–1408.

    Article  CAS  Google Scholar 

  38. Pellerin L . Brain energetics (thought needs food). Curr Opin Clin Nutr Metab Care 2008; 11: 701–705.

    Article  Google Scholar 

  39. Wang L, Tu P, Bonet L, Aubrey KR, Supplisson S . Cytosolic transmitter concentration regulates vesicle cycling at hippocampal GABAergic terminals. Neuron 2013; 80: 143–158.

    Article  CAS  Google Scholar 

  40. Lee S, Yoon BE, Berglund K, Oh SJ, Park H, Shin HS et al Channel-mediated tonic GABA release from glia. Science 2010; 330: 790–796.

    Article  CAS  Google Scholar 

  41. Occhipinti R, Somersalo E, Calvetti D . Energetics of inhibition: insights with a computational model of the human GABAergic neuron-astrocyte cellular complex. J Cereb Blood Flow Metab 2010; 30: 1834–1846.

    Article  CAS  Google Scholar 

  42. Derry CP, Duncan S . Sleep and epilepsy. Epilepsy Behav 2013; 26: 394–404.

    Article  Google Scholar 

  43. Hemming K, Maguire MJ, Hutton JL, Marson AG . Vigabatrin for refractory partial epilepsy. Cochrane Database Syst Rev 2013; 1: CD007302.

    Google Scholar 

  44. Medina-Kauwe LK, Tobin AJ, De Meirleir L, Jaeken J, Jakobs C, Nyhan WL et al 4-Aminobutyrate aminotransferase (GABA-transaminase) deficiency. J Inherit Metab Dis 1999; 22: 414–427.

    Article  CAS  Google Scholar 

  45. Tsuji M, Aida N, Obata T, Tomiyasu M, Furuya N, Kurosawa K et al A new case of GABA transaminase deficiency facilitated by proton MR spectroscopy. J Inherit Metab Dis 2010; 33: 85–90.

    Article  CAS  Google Scholar 

  46. US-FDA (2012). Sabril Medication Guide. In: Administration USFaD (ed). Washington, DC: Administration USFaD.

  47. Raol YH, Meti BL . Effects of vigabatrin on sleep-wakefulness cycle in amygdala-kindled rats. Epilepsia 2000; 41: 128–131.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Penn Proteomics Core for conducting the 2D-DIGE gel analysis, Erin Forbeck and Xiaobo Wan for help with the HPLC analysis and members of the laboratory for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Sehgal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, WF., Maguire, S., Sowcik, M. et al. A neuron–glia interaction involving GABA transaminase contributes to sleep loss in sleepless mutants. Mol Psychiatry 20, 240–251 (2015). https://doi.org/10.1038/mp.2014.11

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2014.11

Keywords

This article is cited by

Search

Quick links