Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Protective autoimmunity functions by intracranial immunosurveillance to support the mind: The missing link between health and disease

Abstract

Circulating immune cells support hippocampal neurogenesis, spatial memory, expression of brain-derived neurotrophic factor, and resilience to stress. Nevertheless, considering the immune privileged status of the central nervous system (CNS), such cells were assumed to be excluded from the healthy brain. It is evident, however, that the CNS is continuously surveyed by leukocytes, though their function is still a mystery. Coupling this routine leukocyte trafficking with the function attributed to circulating T cells in brain plasticity led us to propose here that CNS immunosurveillance is an integral part of the functioning brain. Anatomical restriction of selected self-recognizing leukocytes to the brain's borders and fluids (cerebrospinal fluid) not only supports the brain's activity, but also controls the potential aggressiveness of such cells. Accordingly, the brain's ‘privilege’ is its acquisition of a private peripheral immunological niche under its own control, which supports brain function. Immune malfunction may comprise a missing link between a healthy and diseased mind.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Shirai Y . On the transplantation of the rat sarcoma in adult heterogeneous animals. Jpn Med World 1921; 1: 14–15.

    Google Scholar 

  2. Medawar PB . Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br J Exp Pathol 1948; 29: 58–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Barker CF, Billingham RE . Immunologically privileged sites. Adv Immunol 1977; 25: 1–54.

    CAS  PubMed  Google Scholar 

  4. Perry VH, Andersson PB, Gordon S . Macrophages and inflammation in the central nervous system. Trends Neurosci 1993; 16: 268–273.

    Article  CAS  PubMed  Google Scholar 

  5. Ransohoff RM, Kivisakk P, Kidd G . Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 2003; 3: 569–581.

    Article  CAS  PubMed  Google Scholar 

  6. Engelhardt B . Regulation of immune cell entry into the central nervous system. Results Probl Cell Differ 2006; 43: 259–280.

    Article  CAS  PubMed  Google Scholar 

  7. Galea I, Bechmann I, Perry VH . What is immune privilege (not)? Trends Immunol 2007; 28: 12–18.

    Article  CAS  PubMed  Google Scholar 

  8. Bartholomaus I, Kawakami N, Odoardi F, Schlager C, Miljkovic D, Ellwart JW et al. Effector T cell interactions with meningeal vascular structures in nascent autoimmune CNS lesions. Nature 2009; 462: 94–98.

    Article  PubMed  CAS  Google Scholar 

  9. Reboldi A, Coisne C, Baumjohann D, Benvenuto F, Bottinelli D, Lira S et al. C-C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol 2009; 10: 514–523.

    Article  CAS  PubMed  Google Scholar 

  10. Kim JV, Kang SS, Dustin ML, McGavern DB . Myelomonocytic cell recruitment causes fatal CNS vascular injury during acute viral meningitis. Nature 2009; 457: 191–195.

    Article  CAS  PubMed  Google Scholar 

  11. Ziv Y, Ron N, Butovsky O, Landa G, Sudai E, Greenberg N et al. Immune cells contribute to the maintenance of neurogenesis and spatial learning abilities in adulthood. Nat Neurosci 2006; 9: 268–275.

    Article  CAS  PubMed  Google Scholar 

  12. Kipnis J, Cohen H, Cardon M, Ziv Y, Schwartz M . T cell deficiency leads to cognitive dysfunction: implications for therapeutic vaccination for schizophrenia and other psychiatric conditions. Proc Natl Acad Sci USA 2004; 101: 8180–8185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lewitus GM, Cohen H, Schwartz M . Reducing post-traumatic anxiety by immunization. Brain Behav Immun 2008; 22: 1108–1114.

    Article  CAS  PubMed  Google Scholar 

  14. Lewitus GM, Wilf-Yarkoni A, Ziv Y, Shabat-Simon M, Gersner R, Zangen A et al. Vaccination as a novel approach for treating depressive behavior. Biol Psychiatry 2009; 65: 283–288.

    Article  PubMed  Google Scholar 

  15. Rapalino O, Lazarov-Spiegler O, Agranov E, Velan GJ, Yoles E, Fraidakis M et al. Implantation of stimulated homologous macrophages results in partial recovery of paraplegic rats. Nat Med 1998; 4: 814–821.

    Article  CAS  PubMed  Google Scholar 

  16. Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M . Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med 1999; 5: 49–55.

    Article  CAS  PubMed  Google Scholar 

  17. Hauben E, Agranov E, Gothilf A, Nevo U, Cohen A, Smirnov I et al. Posttraumatic therapeutic vaccination with modified myelin self-antigen prevents complete paralysis while avoiding autoimmune disease. J Clin Invest 2001; 108: 591–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hanisch UK, Kettenmann H . Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci 2007; 10: 1387–1394.

    Article  CAS  PubMed  Google Scholar 

  19. Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 2009; 6: e1000113.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Simard AR, Soulet D, Gowing G, Julien JP, Rivest S . Bone marrow-derived microglia play a critical role in restricting senile plaque formation in Alzheimer's disease. Neuron 2006; 49: 489–502.

    Article  CAS  PubMed  Google Scholar 

  21. Butovsky O, Kunis G, Koronyo-Hamaoui M, Schwartz M . Selective ablation of bone marrow-derived dendritic cells increases amyloid plaques in a mouse Alzheimer's disease model. Eur J Neurosci 2007; 26: 413–416.

    Article  PubMed  Google Scholar 

  22. El Khoury J, Toft M, Hickman SE, Means TK, Terada K, Geula C et al. Ccr2 deficiency impairs microglial accumulation and accelerates progression of Alzheimer-like disease. Nat Med 2007; 13: 432–438.

    Article  CAS  PubMed  Google Scholar 

  23. Steinman L . Elaborate interactions between the immune and nervous systems. Nat Immunol 2004; 5: 575–581.

    Article  CAS  PubMed  Google Scholar 

  24. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW . From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008; 9: 46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. D’Mello C, Le T, Swain MG . Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 2009; 29: 2089–2102.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Schwartz M, Butovsky O, Kipnis J . Does inflammation in an autoimmune disease differ from inflammation in neurodegenerative diseases? Possible implications for therapy. J Neuroimmune Pharmacol 2006; 1: 4–10.

    Article  PubMed  Google Scholar 

  27. Duara R, Barker W, Loewenstein D, Bain L . The basis for disease-modifying treatments for Alzheimer's disease: the Sixth Annual Mild Cognitive Impairment Symposium. Alzheimers Dement 2009; 5: 66–74.

    Article  PubMed  Google Scholar 

  28. Pratico D, Trojanowski JQ . Inflammatory hypotheses: novel mechanisms of Alzheimer's neurodegeneration and new therapeutic targets? Neurobiol Aging 2000; 21: 441–445; discussion 451–453.

    Article  CAS  PubMed  Google Scholar 

  29. Popovich PG . Immunological regulation of neuronal degeneration and regeneration in the injured spinal cord. Prog Brain Res 2000; 128: 43–58.

    Article  CAS  PubMed  Google Scholar 

  30. Dheen ST, Kaur C, Ling EA . Microglial activation and its implications in the brain diseases. Curr Med Chem 2007; 14: 1189–1197.

    Article  CAS  PubMed  Google Scholar 

  31. Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, Lee L et al. Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 2007; 13: 935–943.

    Article  CAS  PubMed  Google Scholar 

  32. Beers DR, Henkel JS, Zhao W, Wang J, Appel SH . CD4+ T cells support glial neuroprotection, slow disease progression, and modify glial morphology in an animal model of inherited ALS. Proc Natl Acad Sci USA 2008; 105: 15558–15563.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Banerjee R, Mosley RL, Reynolds AD, Dhar A, Jackson-Lewis V, Gordon PH et al. Adaptive immune neuroprotection in G93A-SOD1 amyotrophic lateral sclerosis mice. PLoS One 2008; 3: e2740.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Chiu IM, Chen A, Zheng Y, Kosaras B, Tsiftsoglou SA, Vartanian TK et al. T lymphocytes potentiate endogenous neuroprotective inflammation in a mouse model of ALS. Proc Natl Acad Sci USA 2008; 105: 17913–17918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Town T, Laouar Y, Pittenger C, Mori T, Szekely CA, Tan J et al. Blocking TGF-beta-Smad2/3 innate immune signaling mitigates Alzheimer-like pathology. Nat Med 2008; 14: 681–687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lucin KM, Wyss-Coray T . Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 2009; 64: 110–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Najafian N, Chitnis T, Salama AD, Zhu B, Benou C, Yuan X et al. Regulatory functions of CD8+CD28− T cells in an autoimmune disease model. J Clin Invest 2003; 112: 1037–1048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Frenkel D, Huang Z, Maron R, Koldzic DN, Hancock WW, Moskowitz MA et al. Nasal vaccination with myelin oligodendrocyte glycoprotein reduces stroke size by inducing IL-10-producing CD4+ T cells. J Immunol 2003; 171: 6549–6555.

    Article  CAS  PubMed  Google Scholar 

  39. Nguyen MD, Julien JP, Rivest S . Innate immunity: the missing link in neuroprotection and neurodegeneration? Nat Rev Neurosci 2002; 3: 216–227.

    Article  CAS  PubMed  Google Scholar 

  40. Wolf SA, Steiner B, Akpinarli A, Kammertoens T, Nassenstein C, Braun A et al. CD4-positive T lymphocytes provide a neuroimmunological link in the control of adult hippocampal neurogenesis. J Immunol 2009; 182: 3979–3984.

    Article  CAS  PubMed  Google Scholar 

  41. Brynskikh A, Warren T, Zhu J, Kipnis J . Adaptive immunity affects learning behavior in mice. Brain Behav Immun 2008; 22: 861–869.

    Article  CAS  PubMed  Google Scholar 

  42. Butovsky O, Koronyo-Hamaoui M, Kunis G, Ophir E, Landa G, Cohen H et al. Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci USA 2006; 103: 11784–11789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Koronyo-Hamaoui M, Ko MK, Koronyo Y, Azoulay D, Seksenyan A, Kunis G et al. Attenuation of AD-like neuropathology by harnessing peripheral immune cells: local elevation of IL-10 and MMP-9. J Neurochem 2009; 111: 1409–1424.

    Article  CAS  PubMed  Google Scholar 

  44. Seksenyan A, Ron-Harel N, Azoulay D, Cahalon L, Cardon M, Rogeri P et al. Thymic involution in amyotrophic lateral sclerosis. J Cell Mol Med 2009, July 24 [E-pub ahead of print].

  45. Garg SK, Banerjee R, Kipnis J . Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J Immunol 2008; 180: 3866–3873.

    Article  CAS  PubMed  Google Scholar 

  46. Yong VW, Rivest S . Taking advantage of the systemic immune system to cure brain diseases. Neuron 2009; 64: 55–60.

    Article  CAS  PubMed  Google Scholar 

  47. Shaked I, Tchoresh D, Gersner R, Meiri G, Mordechai S, Xiao X et al. Protective autoimmunity: interferon-gamma enables microglia to remove glutamate without evoking inflammatory mediators. J Neurochem 2005; 92: 997–1009.

    Article  CAS  PubMed  Google Scholar 

  48. Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M . Activation of microglia by aggregated beta-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-gamma and IL-4 render them protective. Mol Cell Neurosci 2005; 29: 381–393.

    Article  CAS  PubMed  Google Scholar 

  49. Kempermann G, Kuhn HG, Gage FH . More hippocampal neurons in adult mice living in an enriched environment. Nature 1997; 386: 493–495.

    Article  CAS  PubMed  Google Scholar 

  50. Shechter R, Ziv Y, Schwartz M . New GABAergic interneurons supported by myelin-specific T cells are formed in intact adult spinal cord. Stem Cells 2007; 25: 2277–2282.

    Article  PubMed  Google Scholar 

  51. Rolls A, Shechter R, London A, Ziv Y, Ronen A, Levy R et al. Toll-like receptors modulate adult hippocampal neurogenesis. Nat Cell Biol 2007; 9: 1081–1088.

    Article  CAS  PubMed  Google Scholar 

  52. Monje ML, Toda H, Palmer TD . Inflammatory blockade restores adult hippocampal neurogenesis. Science 2003; 302: 1760–1765.

    Article  CAS  PubMed  Google Scholar 

  53. Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O . Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci USA 2003; 100: 13632–13637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ziv Y, Schwartz M . Immune-based regulation of adult neurogenesis: implications for learning and memory. Brain Behav Immun 2008; 22: 167–176.

    Article  CAS  PubMed  Google Scholar 

  55. Ron-Harel N, Segev Y, Lewitus GM, Cardon M, Ziv Y, Netanely D et al. Age-dependent spatial memory loss can be partially restored by immune activation. Rejuvenation Res 2008; 11: 903–913.

    Article  CAS  PubMed  Google Scholar 

  56. Santarelli L, Saxe M, Gross C, Surget A, Battaglia F, Dulawa S et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 2003; 301: 805–809.

    Article  CAS  PubMed  Google Scholar 

  57. Knapman A, Heinzmann JM, Hellweg R, Holsboer F, Landgraf R, Touma C . Increased stress reactivity is associated with cognitive deficits and decreased hippocampal brain-derived neurotrophic factor in a mouse model of affective disorders. J Psychiatr Res 2009, December 23 [E-pub ahead of print].

  58. Cohen H, Ziv Y, Cardon M, Kaplan Z, Matar MA, Gidron Y et al. Maladaptation to mental stress mitigated by the adaptive immune system via depletion of naturally occurring regulatory CD4+CD25+ cells. J Neurobiol 2006; 66: 552–563.

    Article  PubMed  Google Scholar 

  59. Cohen IR, Wekerle H . Autosensitization of lymphocytes against thymus reticulum cells. Science 1972; 176: 1324–1325.

    Article  CAS  PubMed  Google Scholar 

  60. Siggs OM, Makaroff LE, Liston A . The why and how of thymocyte negative selection. Curr Opin Immunol 2006; 18: 175–183.

    Article  CAS  PubMed  Google Scholar 

  61. Cohen IR, Young DB . Autoimmunity, microbial immunity and the immunological homunculus. Immunol Today 1991; 12: 105–110.

    Article  CAS  PubMed  Google Scholar 

  62. Schwartz M, Shaked I, Fisher J, Mizrahi T, Schori H . Protective autoimmunity against the enemy within: fighting glutamate toxicity. Trends Neurosci 2003; 26: 297–302.

    Article  CAS  PubMed  Google Scholar 

  63. Murphy JB, Sturm E . Conditions determining the transplantability of tissues in the brain. J Exp Med 1923; 38: 183–197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Mason DW, Charlton HM, Jones AJ, Lavy CB, Puklavec M, Simmonds SJ . The fate of allogeneic and xenogeneic neuronal tissue transplanted into the third ventricle of rodents. Neuroscience 1986; 19: 685–694.

    Article  CAS  PubMed  Google Scholar 

  65. Matyszak MK, Perry VH . A comparison of leucocyte responses to heat-killed bacillus Calmette-Guerin in different CNS compartments. Neuropathol Appl Neurobiol 1996; 22: 44–53.

    Article  CAS  PubMed  Google Scholar 

  66. Stevenson PG, Hawke S, Sloan DJ, Bangham CR . The immunogenicity of intracerebral virus infection depends on anatomical site. J Virol 1997; 71: 145–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Andersson PB, Perry VH, Gordon S . The acute inflammatory response to lipopolysaccharide in CNS parenchyma differs from that in other body tissues. Neuroscience 1992; 48: 169–186.

    Article  CAS  PubMed  Google Scholar 

  68. Kniesel U, Wolburg H . Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 2000; 20: 57–76.

    Article  CAS  PubMed  Google Scholar 

  69. Piccio L, Rossi B, Scarpini E, Laudanna C, Giagulli C, Issekutz AC et al. Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric G(i)-linked receptors. J Immunol 2002; 168: 1940–1949.

    Article  CAS  PubMed  Google Scholar 

  70. Chan WY, Kohsaka S, Rezaie P . The origin and cell lineage of microglia: new concepts. Brain Res Rev 2007; 53: 344–354.

    Article  CAS  PubMed  Google Scholar 

  71. Soulet D, Rivest S . Bone-marrow-derived microglia: myth or reality? Curr Opin Pharmacol 2008; 8: 508–518.

    Article  CAS  PubMed  Google Scholar 

  72. Nimmerjahn A, Kirchhoff F, Helmchen F . Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308: 1314–1318.

    Article  CAS  PubMed  Google Scholar 

  73. Perry VH . A revised view of the central nervous system microenvironment and major histocompatibility complex class II antigen presentation. J Neuroimmunol 1998; 90: 113–121.

    Article  CAS  PubMed  Google Scholar 

  74. Hoek RM, Ruuls SR, Murphy CA, Wright GJ, Goddard R, Zurawski SM et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000; 290: 1768–1771.

    Article  CAS  PubMed  Google Scholar 

  75. Cardona AE, Pioro EP, Sasse ME, Kostenko V, Cardona SM, Dijkstra IM et al. Control of microglial neurotoxicity by the fractalkine receptor. Nat Neurosci 2006; 9: 917–924.

    Article  CAS  PubMed  Google Scholar 

  76. Bechmann I, Mor G, Nilsen J, Eliza M, Nitsch R, Naftolin F . FasL (CD95L, Apo1L) is expressed in the normal rat and human brain: evidence for the existence of an immunological brain barrier. Glia 1999; 27: 62–74.

    Article  CAS  PubMed  Google Scholar 

  77. Engelhardt B, Ransohoff RM . The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 2005; 26: 485–495.

    Article  CAS  PubMed  Google Scholar 

  78. Carrithers MD, Visintin I, Kang SJ, Janeway Jr CA . Differential adhesion molecule requirements for immune surveillance and inflammatory recruitment. Brain 2000; 123 (Part 6): 1092–1101.

    Article  PubMed  Google Scholar 

  79. Carrithers MD, Visintin I, Viret C, Janeway Jr CS . Role of genetic background in P selectin-dependent immune surveillance of the central nervous system. J Neuroimmunol 2002; 129: 51–57.

    Article  CAS  PubMed  Google Scholar 

  80. Strazielle N, Ghersi-Egea JF . Choroid plexus in the central nervous system: biology and physiopathology. J Neuropathol Exp Neurol 2000; 59: 561–574.

    Article  CAS  PubMed  Google Scholar 

  81. Dziegielewska KM, Ek J, Habgood MD, Saunders NR . Development of the choroid plexus. Microsc Res Tech 2001; 52: 5–20.

    Article  CAS  PubMed  Google Scholar 

  82. Rascher G, Wolburg H . The tight junctions of the leptomeningeal blood-cerebrospinal fluid barrier during development. J Hirnforsch 1997; 38: 525–540.

    CAS  PubMed  Google Scholar 

  83. Allt G, Lawrenson JG . Is the pial microvessel a good model for blood-brain barrier studies? Brain Res Brain Res Rev 1997; 24: 67–76.

    Article  CAS  PubMed  Google Scholar 

  84. Schulz M, Engelhardt B . The circumventricular organs participate in the immunopathogenesis of experimental autoimmune encephalomyelitis. Cerebrospinal Fluid Res 2005; 2: 8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Bouchaud C, Bosler O . The circumventricular organs of the mammalian brain with special reference to monoaminergic innervation. Int Rev Cytol 1986; 105: 283–327.

    Article  CAS  PubMed  Google Scholar 

  86. Matyszak MK, Perry VH . The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 1996; 74: 599–608.

    Article  CAS  PubMed  Google Scholar 

  87. McMenamin PG . Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J Comp Neurol 1999; 405: 553–562.

    Article  CAS  PubMed  Google Scholar 

  88. Kivisakk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci USA 2003; 100: 8389–8394.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Steffen BJ, Breier G, Butcher EC, Schulz M, Engelhardt B . ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am J Pathol 1996; 148: 1819–1838.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Kivisakk P, Imitola J, Rasmussen S, Elyaman W, Zhu B, Ransohoff RM et al. Localizing central nervous system immune surveillance: meningeal antigen-presenting cells activate T cells during experimental autoimmune encephalomyelitis. Ann Neurol 2009; 65: 457–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Lassmann H, Wisniewski HM . Chronic relapsing EAE. Time course of neurological symptoms and pathology. Acta Neuropathol 1978; 43: 35–42.

    Article  CAS  PubMed  Google Scholar 

  92. Provencio JJ, Kivisakk P, Tucky BH, Luciano MG, Ransohoff RM . Comparison of ventricular and lumbar cerebrospinal fluid T cells in non-inflammatory neurological disorder (NIND) patients. J Neuroimmunol 2005; 163: 179–184.

    Article  CAS  PubMed  Google Scholar 

  93. Svenningsson A, Andersen O, Edsbagge M, Stemme S . Lymphocyte phenotype and subset distribution in normal cerebrospinal fluid. J Neuroimmunol 1995; 63: 39–46.

    Article  CAS  PubMed  Google Scholar 

  94. Svenningsson A, Hansson GK, Andersen O, Andersson R, Patarroyo M, Stemme S . Adhesion molecule expression on cerebrospinal fluid T lymphocytes: evidence for common recruitment mechanisms in multiple sclerosis, aseptic meningitis, and normal controls. Ann Neurol 1993; 34: 155–161.

    Article  CAS  PubMed  Google Scholar 

  95. Hintzen RQ, Fiszer U, Fredrikson S, Rep M, Polman CH, van Lier RA et al. Analysis of CD27 surface expression on T cell subsets in MS patients and control individuals. J Neuroimmunol 1995; 56: 99–105.

    Article  CAS  PubMed  Google Scholar 

  96. Kivisakk P, Trebst C, Liu Z, Tucky BH, Sorensen TL, Rudick RA et al. T-cells in the cerebrospinal fluid express a similar repertoire of inflammatory chemokine receptors in the absence or presence of CNS inflammation: implications for CNS trafficking. Clin Exp Immunol 2002; 129: 510–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Zeine R, Owens T . Direct demonstration of the infiltration of murine central nervous system by Pgp-1/CD44high CD45RB(low) CD4+ T cells that induce experimental allergic encephalomyelitis. J Neuroimmunol 1992; 40: 57–69.

    Article  CAS  PubMed  Google Scholar 

  98. Flugel A, Berkowicz T, Ritter T, Labeur M, Jenne DE, Li Z et al. Migratory activity and functional changes of green fluorescent effector cells before and during experimental autoimmune encephalomyelitis. Immunity 2001; 14: 547–560.

    Article  CAS  PubMed  Google Scholar 

  99. Trebst C, Sorensen TL, Kivisakk P, Cathcart MK, Hesselgesser J, Horuk R et al. CCR1+/CCR5+ mononuclear phagocytes accumulate in the central nervous system of patients with multiple sclerosis. Am J Pathol 2001; 159: 1701–1710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Cserr HF, Knopf PM . Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 1992; 13: 507–512.

    Article  CAS  PubMed  Google Scholar 

  101. Weller RO, Engelhardt B, Phillips MJ . Lymphocyte targeting of the central nervous system: a review of afferent and efferent CNS-immune pathways. Brain Pathol 1996; 6: 275–288.

    Article  CAS  PubMed  Google Scholar 

  102. Yamada S, DePasquale M, Patlak CS, Cserr HF . Albumin outflow into deep cervical lymph from different regions of rabbit brain. Am J Physiol 1991; 261 (4 Part 2): H1197–H1204.

    CAS  PubMed  Google Scholar 

  103. Widner H, Moller G, Johansson BB . Immune response in deep cervical lymph nodes and spleen in the mouse after antigen deposition in different intracerebral sites. Scand J Immunol 1988; 28: 563–571.

    Article  CAS  PubMed  Google Scholar 

  104. Kida S, Pantazis A, Weller RO . CSF drains directly from the subarachnoid space into nasal lymphatics in the rat. Anatomy, histology and immunological significance. Neuropathol Appl Neurobiol 1993; 19: 480–488.

    Article  CAS  PubMed  Google Scholar 

  105. Goldmann J, Kwidzinski E, Brandt C, Mahlo J, Richter D, Bechmann I . T cells traffic from brain to cervical lymph nodes via the cribroid plate and the nasal mucosa. J Leukoc Biol 2006; 80: 797–801.

    Article  CAS  PubMed  Google Scholar 

  106. Harling-Berg CJ, Park TJ, Knopf PM . Role of the cervical lymphatics in the Th2-type hierarchy of CNS immune regulation. J Neuroimmunol 1999; 101: 111–127.

    Article  CAS  PubMed  Google Scholar 

  107. Hatterer E, Davoust N, Didier-Bazes M, Vuaillat C, Malcus C, Belin MF et al. How to drain without lymphatics? Dendritic cells migrate from the cerebrospinal fluid to the B-cell follicles of cervical lymph nodes. Blood 2006; 107: 806–812.

    Article  CAS  PubMed  Google Scholar 

  108. Harling-Berg CJ, Knopf PM, Cserr HF . Myelin basic protein infused into cerebrospinal fluid suppresses experimental autoimmune encephalomyelitis. J Neuroimmunol 1991; 35: 45–51.

    Article  CAS  PubMed  Google Scholar 

  109. Wenkel H, Streilein JW, Young MJ . Systemic immune deviation in the brain that does not depend on the integrity of the blood-brain barrier. J Immunol 2000; 164: 5125–5131.

    Article  CAS  PubMed  Google Scholar 

  110. Wolvers DA, Coenen-de Roo CJ, Mebius RE, van der Cammen MJ, Tirion F, Miltenburg AM et al. Intranasally induced immunological tolerance is determined by characteristics of the draining lymph nodes: studies with OVA and human cartilage gp-39. J Immunol 1999; 162: 1994–1998.

    CAS  PubMed  Google Scholar 

  111. Streilein JW . Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol 2003; 3: 879–889.

    Article  CAS  PubMed  Google Scholar 

  112. Wilbanks GA, Streilein JW . Fluids from immune privileged sites endow macrophages with the capacity to induce antigen-specific immune deviation via a mechanism involving transforming growth factor-beta. Eur J Immunol 1992; 22: 1031–1036.

    Article  CAS  PubMed  Google Scholar 

  113. Taylor AW, Streilein JW . Inhibition of antigen-stimulated effector T cells by human cerebrospinal fluid. Neuroimmunomodulation 1996; 3: 112–118.

    Article  CAS  PubMed  Google Scholar 

  114. Brabb T, von Dassow P, Ordonez N, Schnabel B, Duke B, Goverman J . In situ tolerance within the central nervous system as a mechanism for preventing autoimmunity. J Exp Med 2000; 192: 871–880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Matzinger P . Friendly and dangerous signals: is the tissue in control? Nat Immunol 2007; 8: 11–13.

    Article  CAS  PubMed  Google Scholar 

  116. Butovsky O, Ziv Y, Schwartz A, Landa G, Talpalar AE, Pluchino S et al. Microglia activated by IL-4 or IFN-gamma differentially induce neurogenesis and oligodendrogenesis from adult stem/progenitor cells. Mol Cell Neurosci 2006; 31: 149–160.

    Article  CAS  PubMed  Google Scholar 

  117. Ron-Harel N, Schwartz M . Immune senescence and brain aging: can rejuvenation of immunity reverse memory loss? Trends Neurosci 2009; 32: 367–375.

    Article  CAS  PubMed  Google Scholar 

  118. Lewitus GM, Schwartz M . Behavioral immunization: immunity to self-antigens contributes to psychological stress resilience. Mol Psychiatry 2009; 14: 532–536.

    Article  CAS  PubMed  Google Scholar 

  119. Zlokovic BV . The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron 2008; 57: 178–201.

    Article  CAS  PubMed  Google Scholar 

  120. Rolls A, Schori H, London A, Schwartz M . Decrease in hippocampal neurogenesis during pregnancy: a link to immunity. Mol Psychiatry 2008; 13: 468–469.

    Article  CAS  PubMed  Google Scholar 

  121. Dhabhar FS, McEwen BS . Acute stress enhances while chronic stress suppresses cell-mediated immunity in vivo: a potential role for leukocyte trafficking. Brain Behav Immun 1997; 11: 286–306.

    Article  CAS  PubMed  Google Scholar 

  122. Smith MA, Makino S, Kvetnansky R, Post RM . Stress and glucocorticoids affect the expression of brain-derived neurotrophic factor and neurotrophin-3 mRNAs in the hippocampus. J Neurosci 1995; 15 (3 Part 1): 1768–1777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Tanapat P, Hastings NB, Rydel TA, Galea LA, Gould E . Exposure to fox odor inhibits cell proliferation in the hippocampus of adult rats via an adrenal hormone-dependent mechanism. J Comp Neurol 2001; 437: 496–504.

    Article  CAS  PubMed  Google Scholar 

  124. Dhabhar FS . Acute stress enhances while chronic stress suppresses skin immunity. The role of stress hormones and leukocyte trafficking. Ann NY Acad Sci 2000; 917: 876–893.

    Article  CAS  PubMed  Google Scholar 

  125. Silberman DM, Ayelli-Edgar V, Zorrilla-Zubilete M, Zieher LM, Genaro AM . Impaired T-cell dependent humoral response and its relationship with T lymphocyte sensitivity to stress hormones in a chronic mild stress model of depression. Brain Behav Immun 2004; 18: 81–90.

    Article  CAS  PubMed  Google Scholar 

  126. Chen B, Dowlatshahi D, MacQueen GM, Wang JF, Young LT . Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry 2001; 50: 260–265.

    Article  CAS  PubMed  Google Scholar 

  127. Brown DR . Role of microglia in age-related changes to the nervous system. ScientificWorldJournal 2009; 9: 1061–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Haynes L, Maue AC . Effects of aging on T cell function. Curr Opin Immunol 2009; 21: 414–417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Winter C, Djodari-Irani A, Sohr R, Morgenstern R, Feldon J, Juckel G et al. Prenatal immune activation leads to multiple changes in basal neurotransmitter levels in the adult brain: implications for brain disorders of neurodevelopmental origin such as schizophrenia. Int J Neuropsychopharmacol 2009; 12: 513–524.

    Article  CAS  PubMed  Google Scholar 

  130. Feldon J, Weiner I . Editorial: special issue on modeling schizophrenia. Behav Brain Res 2009; 204: 255–257.

    Article  CAS  PubMed  Google Scholar 

  131. Gaughran F . Immunity and schizophrenia: autoimmunity, cytokines, and immune responses. Int Rev Neurobiol 2002; 52: 275–302.

    Article  CAS  PubMed  Google Scholar 

  132. Moscavitch SD, Szyper-Kravitz M, Shoenfeld Y . Autoimmune pathology accounts for common manifestations in a wide range of neuro-psychiatric disorders: the olfactory and immune system interrelationship. Clin Immunol 2009; 130: 235–243.

    Article  CAS  PubMed  Google Scholar 

  133. Ganguli R, Brar JS, Rabin BS . Immune abnormalities in schizophrenia: evidence for the autoimmune hypothesis. Harv Rev Psychiatry 1994; 2: 70–83.

    Article  CAS  PubMed  Google Scholar 

  134. Enstrom AM, Van de Water JA, Ashwood P . Autoimmunity in autism. Curr Opin Investig Drugs 2009; 10: 463–473.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Mostafa GA, Shehab AA, Fouad NR . Frequency of CD4+CD25high regulatory T cells in peripheral blood of Egyptian children with autism. J Child Neurol 2009, August 27 [E-pub ahead of print].

  136. Kawikova I, Leckman JF, Kronig H, Katsovich L, Bessen DE, Ghebremichael M et al. Decreased numbers of regulatory T cells suggest impaired immune tolerance in children with tourette syndrome: a preliminary study. Biol Psychiatry 2007; 61: 273–278.

    Article  CAS  PubMed  Google Scholar 

  137. Kipnis J, Cardon M, Strous RD, Schwartz M . Loss of autoimmune T cells correlates with brain diseases: possible implications for schizophrenia? Trends Mol Med 2006; 12: 107–112.

    Article  CAS  PubMed  Google Scholar 

  138. Cardon M, Ron-Harel N, Cohen H, Lewitus GM, Schwartz M . Dysregulation of kisspeptin and neurogenesis at adolescence link inborn immune deficits to the late onset of abnormal sensorimotor gating in congenital psychological disorders. Mol Psychiatry 2010; 15: 415–425.

    Article  CAS  PubMed  Google Scholar 

  139. Myint AM, Schwarz MJ, Steinbusch HW, Leonard BE . Neuropsychiatric disorders related to interferon and interleukins treatment. Metab Brain Dis 2009; 24: 55–68.

    Article  CAS  PubMed  Google Scholar 

  140. Quelhas R, Lopes A . Psychiatric problems in patients infected with hepatitis C before and during antiviral treatment with interferon-alpha: a review. J Psychiatr Pract 2009; 15: 262–281.

    Article  PubMed  Google Scholar 

  141. Lotrich FE, Rabinovitz M, Gironda P, Pollock BG . Depression following pegylated interferon-alpha: characteristics and vulnerability. J Psychosom Res 2007; 63: 131–135.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Dell’Osso L, Pini S, Maggi L, Rucci P, Del Debbio A, Carlini M et al. Subthreshold mania as predictor of depression during interferon treatment in HCV+ patients without current or lifetime psychiatric disorders. J Psychosom Res 2007; 62: 349–355.

    Article  PubMed  Google Scholar 

  143. Koo JW, Duman RS . IL-1beta is an essential mediator of the antineurogenic and anhedonic effects of stress. Proc Natl Acad Sci USA 2008; 105: 751–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Myint AM, Kim YK . Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 2003; 61: 519–525.

    Article  CAS  PubMed  Google Scholar 

  145. Goshen I, Avital A, Kreisel T, Licht T, Segal M, Yirmiya R . Environmental enrichment restores memory functioning in mice with impaired IL-1 signaling via reinstatement of long-term potentiation and spine size enlargement. J Neurosci 2009; 29: 3395–3403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MS is supported by the ERC Advanced Research Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Schwartz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Molecular Psychiatry website (http://www.nature.com/mp)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwartz, M., Shechter, R. Protective autoimmunity functions by intracranial immunosurveillance to support the mind: The missing link between health and disease. Mol Psychiatry 15, 342–354 (2010). https://doi.org/10.1038/mp.2010.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/mp.2010.31

Keywords

This article is cited by

Search

Quick links