Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Brain regulatory T cells

Abstract

The brain, long thought to be isolated from the peripheral immune system, is increasingly recognized to be integrated into a systemic immunological network. These conduits of immune–brain interaction and immunosurveillance processes necessitate the presence of complementary immunoregulatory mechanisms, of which brain regulatory T cells (Treg cells) are likely a key facet. Treg cells represent a dynamic population in the brain, with continual influx, specialization to a brain-residency phenotype and relatively rapid displacement by newly incoming cells. In addition to their functions in suppressing adaptive immunity, an emerging view is that Treg cells in the brain dampen down glial reactivity in response to a range of neurological insults, and directly assist in multiple regenerative and reparative processes during tissue pathology. The utility and malleability of the brain Treg cell population make it an attractive therapeutic target across the full spectrum of neurological conditions, ranging from neuroinflammatory to neurodegenerative and even psychiatric diseases. Therapeutic modalities currently under intense development include Treg cell therapy, IL-2 therapy to boost Treg cell numbers and multiple innovative approaches to couple these therapeutics to brain delivery mechanisms for enhanced potency. Here we review the state of the art of brain Treg cell knowledge together with the potential avenues for future integration into medical practice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key features of brain regulatory T cells.
Fig. 2: Potential migration routes for brain regulatory T cells.
Fig. 3: Harnessing brain regulatory T cells to treat neuroinflammation.

Similar content being viewed by others

References

  1. DuPage, M. & Bluestone, J. A. Harnessing the plasticity of CD4+ T cells to treat immune-mediated disease. Nat. Rev. Immunol. 16, 149–163 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Machhi, J. et al. Harnessing regulatory T cell neuroprotective activities for treatment of neurodegenerative disorders. Mol. Neurodegener. 15, 32 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Panduro, M., Benoist, C. & Mathis, D. Tissue Tregs. Annu. Rev. Immunol. 34, 609–633 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat. Med. 15, 930–939 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Burzyn, D. et al. A special population of regulatory T cells potentiates muscle repair. Cell 155, 1282–1295 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arpaia, N. et al. A distinct function of regulatory T cells in tissue protection. Cell 162, 1078–1089 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Schiering, C. et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 513, 564–568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rosenblum, M. D. et al. Response to self antigen imprints regulatory memory in tissues. Nature 480, 538–542 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Delacher, M. et al. Genome-wide DNA-methylation landscape defines specialization of regulatory T cells in tissues. Nat. Immunol. 18, 1160–1172 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Burton, O. et al. The tissue-resident regulatory T cell pool is shaped by transient multi-tissue migration and a conserved residency program. Preprint at bioRxiv https://doi.org/10.1101/2023.08.14.553196 (2023).

  11. Pasciuto, E. et al. Microglia require CD4 T cells to complete the fetal-to-adult transition. Cell 182, 625–640.e24 (2020). This study is the first to analyse the phenotype, kinetics and function of brain-resident Treg cells in the homeostatic state in mice and humans.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ito, M. et al. Brain regulatory T cells suppress astrogliosis and potentiate neurological recovery. Nature 565, 246–250 (2019). This study unveils innovative mechanisms through which Treg cells actively participate in the process of tissue repair following brain injury.

    Article  CAS  PubMed  Google Scholar 

  13. Garg, G. et al. Blimp1 prevents methylation of Foxp3 and loss of regulatory T cell identity at sites of inflammation. Cell Rep. 26, 1854–1868.e5 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. O’Connor, R. A., Malpass, K. H. & Anderton, S. M. The inflamed central nervous system drives the activation and rapid proliferation of Foxp3+ regulatory T cells. J. Immunol. 179, 958–966 (2007).

    Article  PubMed  Google Scholar 

  15. Korn, T. et al. Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat. Med. 13, 423–431 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yang, S., Fujikado, N., Kolodin, D., Benoist, C. & Mathis, D. Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348, 589–594 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schlager, C. et al. Effector T-cell trafficking between the leptomeninges and the cerebrospinal fluid. Nature 530, 349–353 (2016).

    Article  PubMed  Google Scholar 

  18. Medawar, P. B. Immunity to homologous grafted skin; the fate of skin homografts transplanted to the brain, to subcutaneous tissue, and to the anterior chamber of the eye. Br. J. Exp. Pathol. 29, 58–69 (1948).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Proulx, S. T. & Engelhardt, B. Central nervous system zoning: how brain barriers establish subdivisions for CNS immune privilege and immune surveillance. J. Intern. Med. 292, 47–67 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nishihara, H. et al. Human CD4+ T cell subsets differ in their abilities to cross endothelial and epithelial brain barriers in vitro. Fluids Barriers CNS 17, 3 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, P. et al. C–C chemokine receptor type 5 (CCR5)-mediated docking of transferred Tregs protects against early blood–brain barrier disruption after stroke. J. Am. Heart Assoc. 6, e006387 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Da Mesquita, S. et al. Aging-associated deficit in CCR7 is linked to worsened glymphatic function, cognition, neuroinflammation, and β-amyloid pathology. Sci. Adv. 7, eabe4601 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ben-Yehuda, H. et al. Key role of the CCR2–CCL2 axis in disease modification in a mouse model of tauopathy. Mol. Neurodegener. 16, 39 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lucaciu, A. et al. A sphingosine 1-phosphate gradient is linked to the cerebral recruitment of T helper and regulatory T helper cells during acute ischemic stroke. Int. J. Mol. Sci. 21, 6242 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee, H. T. et al. A crucial role of CXCL14 for promoting regulatory T cells activation in stroke. Theranostics 7, 855–875 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hrastelj, J. et al. CSF-resident CD4+ T-cells display a distinct gene expression profile with relevance to immune surveillance and multiple sclerosis. Brain Commun. 3, fcab155 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kivisakk, P. et al. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc. Natl Acad. Sci. USA 100, 8389–8394 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Llovera, G. et al. The choroid plexus is a key cerebral invasion route for T cells after stroke. Acta Neuropathol. 134, 851–868 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Wolburg, H. & Mack, A. F. Comment on the topology of mammalian blood–cerebrospinal fluid barrier. Neurol. Psychiatry Brain Res. 20, 70–72 (2014).

    Article  Google Scholar 

  30. Steffen, B. J., Breier, G., Butcher, E. C., Schulz, M. & Engelhardt, B. ICAM-1, VCAM-1, and MAdCAM-1 are expressed on choroid plexus epithelium but not endothelium and mediate binding of lymphocytes in vitro. Am. J. Pathol. 148, 1819–1838 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kunis, G. et al. IFN-γ-dependent activation of the brain’s choroid plexus for CNS immune surveillance and repair. Brain 136, 3427–3440 (2013).

    Article  PubMed  Google Scholar 

  32. Kertser, A. et al. Corticosteroid signaling at the brain–immune interface impedes coping with severe psychological stress. Sci. Adv. 5, eaav4111 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Reboldi, A. et al. C–C chemokine receptor 6-regulated entry of TH-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat. Immunol. 10, 514–523 (2009).

    Article  CAS  PubMed  Google Scholar 

  34. Li, Z. et al. Blockade of VEGFR3 signaling leads to functional impairment of dural lymphatic vessels without affecting autoimmune neuroinflammation. Sci. Immunol. 8, eabq0375 (2023).

    Article  CAS  PubMed  Google Scholar 

  35. Howell, O. W. et al. Meningeal inflammation is widespread and linked to cortical pathology in multiple sclerosis. Brain 134, 2755–2771 (2011).

    Article  PubMed  Google Scholar 

  36. Hsu, M. et al. Neuroinflammation creates an immune regulatory niche at the meningeal lymphatic vasculature near the cribriform plate. Nat. Immunol. 23, 581–593 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dileepan, T. et al. Group A streptococcus intranasal infection promotes CNS infiltration by streptococcal-specific TH17 cells. J. Clin. Invest. 126, 303–317 (2016).

    Article  PubMed  Google Scholar 

  38. Jacobs, J. F. et al. Prognostic significance and mechanism of Treg infiltration in human brain tumors. J. Neuroimmunol. 225, 195–199 (2010).

    Article  CAS  PubMed  Google Scholar 

  39. Chang, A. L. et al. CCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cells. Cancer Res. 76, 5671–5682 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jordan, J. T. et al. Preferential migration of regulatory T cells mediated by glioma-secreted chemokines can be blocked with chemotherapy. Cancer Immunol. Immunother. 57, 123–131 (2008).

    Article  CAS  PubMed  Google Scholar 

  41. Facciabene, A. et al. Tumour hypoxia promotes tolerance and angiogenesis via CCL28 and Treg cells. Nature 475, 226–230 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Louveau, A. et al. Structural and functional features of central nervous system lymphatic vessels. Nature 523, 337–341 (2015). This work presents compelling evidence that lymphatic vessels within the dura mater play a crucial role in transporting antigens originating from the CNS to the cervical lymph node, reshaping our understanding of immune responses within the CNS.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Yshii, L. et al. Astrocyte-targeted gene delivery of interleukin 2 specifically increases brain-resident regulatory T cell numbers and protects against pathological neuroinflammation. Nat. Immunol. 23, 878–891 (2022). This study includes the first immune therapy to expand specifically brain-resident Treg cells without impacting the peripheral compartment.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. O’Connor, R. A. & Anderton, S. M. Foxp3+ regulatory T cells in the control of experimental CNS autoimmune disease. J. Neuroimmunol. 193, 1–11 (2008).

    Article  PubMed  Google Scholar 

  45. Korn, T. Foxp3+ regulatory T cells in the central nervous system and other nonlymphoid tissues. Eur. J. Immunol. 53, e2250227 (2023).

    Article  PubMed  Google Scholar 

  46. Lyu, J. et al. Microglial/macrophage polarization and function in brain injury and repair after stroke. CNS Neurosci. Ther. 27, 515–527 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Barres, B. A. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430–440 (2008).

    Article  CAS  PubMed  Google Scholar 

  48. Wanner, I. B. et al. A new in vitro model of the glial scar inhibits axon growth. Glia 56, 1691–1709 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  49. He, X. et al. Programmed death protein 1 is essential for maintaining the anti-inflammatory function of infiltrating regulatory T cells in a murine spinal cord injury model. J. Neuroimmunol. 354, 577546 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Reynolds, A. D., Banerjee, R., Liu, J., Gendelman, H. E. & Mosley, R. L. Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J. Leukoc. Biol. 82, 1083–1094 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Beers, D. R. et al. Endogenous regulatory T lymphocytes ameliorate amyotrophic lateral sclerosis in mice and correlate with disease progression in patients with amyotrophic lateral sclerosis. Brain 134, 1293–1314 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Liesz, A. et al. Regulatory T cells are key cerebroprotective immunomodulators in acute experimental stroke. Nat. Med. 15, 192–199 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Shi, L. et al. Treg cell-derived osteopontin promotes microglia-mediated white matter repair after ischemic stroke. Immunity 54, 1527–1542.e8 (2021). This study shows that Treg cell depletion impairs oligodendrogenesis, tissue repair and functional recovery in a mouse model of stroke, with regenerative Treg cell function attributed to promoting reparative microglia via osteopontin.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang, Y., Liu, Z., Cao, B. B., Qiu, Y. H. & Peng, Y. P. Treg cells protect dopaminergic neurons against MPP+ neurotoxicity via CD47–SIRPA interaction. Cell Physiol. Biochem. 41, 1240–1254 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Badr, M. et al. Expansion of regulatory T cells by CD28 superagonistic antibodies attenuates neurodegeneration in A53T-α-synuclein Parkinson’s disease mice. J. Neuroinflammation 19, 319 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kotter, M. R., Li, W. W., Zhao, C. & Franklin, R. J. Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J. Neurosci. 26, 328–332 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Dombrowski, Y. et al. Regulatory T cells promote myelin regeneration in the central nervous system. Nat. Neurosci. 20, 674–680 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Franklin, R. J. M. & Ffrench-Constant, C. Regenerating CNS myelin — from mechanisms to experimental medicines. Nat. Rev. Neurosci. 18, 753–769 (2017).

    Article  CAS  PubMed  Google Scholar 

  59. McIntyre, L. L. et al. Regulatory T cells promote remyelination in the murine experimental autoimmune encephalomyelitis model of multiple sclerosis following human neural stem cell transplant. Neurobiol. Dis. 140, 104868 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Plaisted, W. C. et al. Remyelination is correlated with regulatory T cell induction following human embryoid body-derived neural precursor cell transplantation in a viral model of multiple sclerosis. PLoS ONE 11, e0157620 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  61. de la Vega Gallardo, N. et al. Dynamic CCN3 expression in the murine CNS does not confer essential roles in myelination or remyelination. Proc. Natl Acad. Sci. USA 117, 18018–18028 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Fuente, A. G. D. L. et al. Ageing impairs the regenerative capacity of regulatory T cells in central nervous system remyelination. Preprint at bioRxiv https://doi.org/10.1101/2023.01.25.525562 (2023).

  63. Hsieh, J. et al. IGF-I instructs multipotent adult neural progenitor cells to become oligodendrocytes. J. Cell Biol. 164, 111–122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Glezer, I. & Rivest, S. Oncostatin M is a novel glucocorticoid-dependent neuroinflammatory factor that enhances oligodendrocyte precursor cell activity in demyelinated sites. Brain Behav. Immun. 24, 695–704 (2010).

    Article  CAS  PubMed  Google Scholar 

  65. Irvine, K. A. & Blakemore, W. F. Remyelination protects axons from demyelination-associated axon degeneration. Brain 131, 1464–1477 (2008).

    Article  CAS  PubMed  Google Scholar 

  66. Bruce, C. C., Zhao, C. & Franklin, R. J. Remyelination — an effective means of neuroprotection. Horm. Behav. 57, 56–62 (2010).

    Article  CAS  PubMed  Google Scholar 

  67. Wang, J. et al. Activated regulatory T cell regulates neural stem cell proliferation in the subventricular zone of normal and ischemic mouse brain through interleukin 10. Front. Cell Neurosci. 9, 361 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Ishibashi, S. et al. Galectin-1 regulates neurogenesis in the subventricular zone and promotes functional recovery after stroke. Exp. Neurol. 207, 302–313 (2007).

    Article  CAS  PubMed  Google Scholar 

  69. Chan, A., Yan, J., Csurhes, P., Greer, J. & McCombe, P. Circulating brain derived neurotrophic factor (BDNF) and frequency of BDNF positive T cells in peripheral blood in human ischemic stroke: effect on outcome. J. Neuroimmunol. 286, 42–47 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Li, P. et al. Adoptive regulatory T-cell therapy protects against cerebral ischemia. Ann. Neurol. 74, 458–471 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Deliyanti, D. et al. Foxp3+ Tregs are recruited to the retina to repair pathological angiogenesis. Nat. Commun. 8, 748 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Leung, O. M. et al. Regulatory T cells promote apelin-mediated sprouting angiogenesis in type 2 diabetes. Cell Rep. 24, 1610–1626 (2018).

    Article  CAS  PubMed  Google Scholar 

  73. Cheng, Y. H. et al. Galectin-1 contributes to vascular remodeling and blood flow recovery after cerebral ischemia in mice. Transl. Stroke Res. 13, 160–170 (2022).

    Article  CAS  PubMed  Google Scholar 

  74. Lemaitre, P. et al. Molecular and cognitive signatures of ageing partially restored through synthetic delivery of IL2 to the brain. EMBO Mol. Med. 15, e16805 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liston, A. & Yshii, L. T cells drive aging of the brain. Nat. Immunol. 24, 12–13 (2023).

    Article  CAS  PubMed  Google Scholar 

  76. Raffin, C., Vo, L. T. & Bluestone, J. A. Treg cell-based therapies: challenges and perspectives. Nat. Rev. Immunol. 20, 158–172 (2020).

    Article  CAS  PubMed  Google Scholar 

  77. Liston, A. & Gray, D. H. Homeostatic control of regulatory T cell diversity. Nat. Rev. Immunol. 14, 154–165 (2014).

    Article  CAS  PubMed  Google Scholar 

  78. Yamamoto, S. et al. In vitro generation of brain regulatory T cells by co-culturing with astrocytes. Front. Immunol. 13, 960036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Chwojnicki, K. et al. Administration of CD4+CD25highCD127FoxP3+ regulatory T cells for relapsing–remitting multiple sclerosis: a phase 1 study. BioDrugs 35, 47–60 (2021).

    Article  CAS  PubMed  Google Scholar 

  80. Kohm, A. P., Carpentier, P. A., Anger, H. A. & Miller, S. D. Cutting edge: CD4+CD25+ regulatory T cells suppress antigen-specific autoreactive immune responses and central nervous system inflammation during active experimental autoimmune encephalomyelitis. J. Immunol. 169, 4712–4716 (2002).

    Article  CAS  PubMed  Google Scholar 

  81. Maldini, C. R., Ellis, G. I. & Riley, J. L. CAR T cells for infection, autoimmunity and allotransplantation. Nat. Rev. Immunol. 18, 605–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fransson, M. et al. CAR/FoxP3-engineered T regulatory cells target the CNS and suppress EAE upon intranasal delivery. J. Neuroinflammation 9, 112 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim, Y. C. et al. Engineered MBP-specific human Tregs ameliorate MOG-induced EAE through IL-2-triggered inhibition of effector T cells. J. Autoimmun. 92, 77–86 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bittner, S., Hehlgans, T. & Feuerer, M. Engineered Treg cells as putative therapeutics against inflammatory diseases and beyond. Trends Immunol. 44, 468–483 (2023).

    Article  CAS  PubMed  Google Scholar 

  85. Pierson, W. et al. Antiapoptotic Mcl-1 is critical for the survival and niche-filling capacity of Foxp3+ regulatory T cells. Nat. Immunol. 14, 959–965 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rosenzwajg, M. et al. Immunological and clinical effects of low-dose interleukin-2 across 11 autoimmune diseases in a single, open clinical trial. Ann. Rheum. Dis. 78, 209–217 (2019).

    Article  CAS  PubMed  Google Scholar 

  87. Louapre, C. et al. A randomized double-blind placebo-controlled trial of low-dose interleukin-2 in relapsing–remitting multiple sclerosis. J. Neurol. 270, 4403–4414 (2023).

    Article  CAS  PubMed  Google Scholar 

  88. Dansokho, C. et al. Regulatory T cells delay disease progression in Alzheimer-like pathology. Brain 139, 1237–1251 (2016).

    Article  PubMed  Google Scholar 

  89. Sheean, R. K. et al. Association of regulatory T-cell expansion with progression of amyotrophic lateral sclerosis: a study of humans and a transgenic mouse model. JAMA Neurol. 75, 681–689 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Guo, Z. et al. Low-dose interleukin-2 reverses chronic migraine-related sensitizations through peripheral interleukin-10 and transforming growth factor β1 signaling. Neurobiol. Pain. 12, 100096 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Huang, C., Zhang, F., Li, P. & Song, C. Low-dose IL-2 attenuated depression-like behaviors and pathological changes through restoring the balances between IL-6 and TGF-β and between TH17 and Treg in a chronic stress-induced mouse model of depression. Int. J. Mol. Sci. 23, 13856 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Thonhoff, J. R. et al. Combined regulatory T-lymphocyte and IL-2 treatment is safe, tolerable, and biologically active for 1 year in persons with amyotrophic lateral sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 9, e200019 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Beers, D. R. et al. Tregs attenuate peripheral oxidative stress and acute phase proteins in ALS. Ann. Neurol. 92, 195–200 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bensimon, G., Leigh, P. N. & Group, M. S. Modifying immune response and outcomes in ALS (MIROCALS): design and results of a phase 2b, double-blind randomized placebocontrolled trial of low dose interleukin-2 (ld IL2) in ALS. Platform Communications: Abstract Book—33rd International Symposium on ALS/MND, Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration 23 (2022).

  95. Ward, N. C. et al. IL-2/CD25: a long-acting fusion protein that promotes immune tolerance by selectively targeting the IL-2 receptor on regulatory T cells. J. Immunol. 201, 2579–2592 (2018).

    Article  CAS  PubMed  Google Scholar 

  96. Koten, J. W. et al. IL-2 loaded dextran microspheres with attractive histocompatibility properties for local IL-2 cancer therapy. Cytokine 24, 57–66 (2003).

    Article  CAS  PubMed  Google Scholar 

  97. Lopez, M. G., Diez, M., Alfonso, V. & Taboga, O. Biotechnological applications of occlusion bodies of Baculoviruses. Appl. Microbiol. Biotechnol. 102, 6765–6774 (2018).

    Article  CAS  PubMed  Google Scholar 

  98. de Picciotto, S. et al. Selective activation and expansion of regulatory T cells using lipid encapsulated mRNA encoding a long-acting IL-2 mutein. Nat. Commun. 13, 3866 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Teleanu, D. M., Chircov, C., Grumezescu, A. M., Volceanov, A. & Teleanu, R. I. Blood–brain delivery methods using nanotechnology. Pharmaceutics 10, 269 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Alves, S. et al. Interleukin-2 improves amyloid pathology, synaptic failure and memory in Alzheimer’s disease mice. Brain 140, 826–842 (2017).

    PubMed  Google Scholar 

  101. Heimberger, A. B. et al. Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin. Cancer Res. 14, 5166–5172 (2008).

    Article  CAS  PubMed  Google Scholar 

  102. Crane, C. A., Ahn, B. J., Han, S. J. & Parsa, A. T. Soluble factors secreted by glioblastoma cell lines facilitate recruitment, survival, and expansion of regulatory T cells: implications for immunotherapy. Neuro Oncol. 14, 584–595 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Han, S. et al. Tumour-infiltrating CD4+ and CD8+ lymphocytes as predictors of clinical outcome in glioma. Br. J. Cancer 110, 2560–2568 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. van Hooren, L. et al. CD103+ regulatory T cells underlie resistance to radio-immunotherapy and impair CD8+ T cell activation in glioblastoma. Nat. Cancer 4, 665–681 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Amoozgar, Z. et al. Targeting treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas. Nat. Commun. 12, 2582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Solomon, I. et al. CD25-Treg-depleting antibodies preserving IL-2 signaling on effector T cells enhance effector activation and antitumor immunity. Nat. Cancer 1, 1153–1166 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Adrian Liston, Emanuela Pasciuto, Denise C. Fitzgerald or Lidia Yshii.

Ethics declarations

Competing interests

The VIB and Babraham Institute are owners of patent applications PCT/GB2020/052148 and GB2118073.2, commented on in this work, with A.L., E.P. and L.Y. potential financial beneficiaries of commercialization. D.C.F. declares no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks J. Bluestone and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liston, A., Pasciuto, E., Fitzgerald, D.C. et al. Brain regulatory T cells. Nat Rev Immunol 24, 326–337 (2024). https://doi.org/10.1038/s41577-023-00960-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41577-023-00960-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing