Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Induction of murine adenosine A2A receptor expression by LPS: analysis of the 5′ upstream promoter

Abstract

Non-activated macrophages express low levels of A2ARs and lipopolysaccharides (LPS) upregulates A2AR expression in an NF-κB-dependent manner. The murine A2AR gene is encoded by three exons, m1, m2 and m3. Exons m2 and m3 are conserved, while m1 encodes the 5′ untranslated UTR. Three m1 variants have been defined, m1A, m1B and m1C, with m1C being farthest from the transcriptional start site. LPS upregulates A2ARs in primary murine peritoneal and bone-marrow-derived macrophages and RAW264.7 cells by selectively splicing m1C to m2, through a promoter located upstream of m1C. We have cloned 1.6 kb upstream of m1C into pGL4.16(luc2CP/Hygro) promoterless vector. This construct in RAW 264.7 cells responds to LPS, and adenosine receptor agonists augmented LPS responsiveness. The NF-κB inhibitors BAY-11 and triptolide inhibited LPS-dependent induction. Deletion of a key proximal NF-κB site (402–417) abrogated LPS responsiveness, while deletion of distal NF-κB and C/EBPβ sites did not. Site-directed mutagenesis of CREB (309–320), STAT1 (526–531) and AP2 (566–569) sites had little effect on LPS and adenosine receptor agonist responsiveness; however, mutation of a second STAT1 site (582–588) abrogated this responsiveness. Further analysis of this promoter should provide valuable insights into regulation of A2AR expression in macrophages in response to inflammatory stimuli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Leibovich SJ, Ross R . A macrophage-dependent factor that stimulates the proliferation of fibroblasts in vitro. Am J Pathol 1976; 84: 501–514.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Leibovich SJ, Ross R . The role of the macrophage in wound repair: A study with hydrocortisone and antimacrophage serum. Am J Pathol 1975; 84: 71–85.

    Google Scholar 

  3. Rappolee DA, Mark D, Banda MJ, Werb Z . Wound macrophages express TGF- and other growth factors in vivo: analysis by mRNA phenotyping. Science 1988; 241: 708–712.

    Article  CAS  Google Scholar 

  4. Gordon S . Biology of the macrophage. J Cell Sci Suppl 1986; 4: 267–286.

    Article  CAS  Google Scholar 

  5. Gordon S . Macrophage activation and differentiation. Ann Inst Pasteur Immunol 1986; 137: 197–200.

    Article  Google Scholar 

  6. Goerdt S, Politz O, Schledzewski K, Birk R, Gratchev A, Guillot P et al. Alternative versus classical activation of macrophages. Pathobiology 1999; 67: 222–226.

    Article  CAS  Google Scholar 

  7. Martinez FO, Sica A, Mantovani A, Locati M . Macrophage activation and polarization. Front Biosci 2008; 13: 453–461.

    Article  CAS  Google Scholar 

  8. Ma J, Chen T, Mandelin J, Ceponis A, Miller NE, Hukkanen M et al. Regulation of macrophage activation. Cell Mol Life Sci 2003; 60: 2334–2346.

    Article  CAS  Google Scholar 

  9. Gordon S . Alternative activation of macrophages. Nat Rev Immunol 2003; 3: 23–35.

    Article  CAS  Google Scholar 

  10. Martinez FO, Helming L, Gordon S . Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2008; 27: 451–483.

    Article  Google Scholar 

  11. Linehan SA, Coulson PS, Wilson RA, Mountford AP, Brombacher F, Martinez-Pomares L et al. IL-4 receptor signaling is required for mannose receptor expression by macrophages recruited to granulomata but not resident cells in mice infected with Schistosoma mansoni. Lab Invest 2003; 83: 1223–1231.

    Article  CAS  Google Scholar 

  12. Mantovani A, Sozzani S, Locati M, Allavena P, Sica A . Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 2002; 23: 549–555.

    Article  CAS  Google Scholar 

  13. Goerdt S, Orfanos CE . Other functions, other genes: Alternative activation of antigen-presenting cells. Immunity 1999; 10: 137–142.

    Article  CAS  Google Scholar 

  14. Mosser DM . The many faces of macrophage activation. J Leukoc Biol 2003; 73: 209–212.

    Article  CAS  Google Scholar 

  15. Mosser DM, Edwards JP . Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8: 958–969.

    Article  CAS  Google Scholar 

  16. Zhang X, Mosser DM . Macrophage activation by endogenous danger signals. J Pathol 2008; 214: 161–178.

    Article  CAS  Google Scholar 

  17. Nemeth ZH, Leibovich SJ, Deitch EA, Sperlagh B, Virag L, Vizi ES et al. Adenosine stimulates CREB activation in macrophages via a p38 MAPK-mediated mechanism. Biochem Biophys Res Commun 2003; 312: 883–888.

    Article  CAS  Google Scholar 

  18. Pinhal-Enfield G, Ramanathan M, Hasko G, Vogel SN, Salzman AL, Boons GJ et al. An angiogenic switch in macrophages involving synergy between Toll-like receptors 2, 4, 7 and 9 and adenosine A2A receptors. Am J Pathol 2003; 163: 711–721.

    Article  CAS  Google Scholar 

  19. Nemeth ZH, Leibovich SJ, Deitch EA, Vizi ES, Szabo C, Hasko G . cDNA microarray analysis reveals a nuclear factor-kappaB-independent regulation of macrophage function by adenosine. J.f Pharmacol. Exp. Therapeut 2003; 306: 1042–1049.

    Article  CAS  Google Scholar 

  20. Ramanathan M, Luo W, Csoka B, Lukashev D, Sitkovsky MV, Hasko G et al. Differential regulation of HIF-1{alpha} isoforms in murine macrophages by TLR4 and adenosine A2A receptor agonists. J Leukoc Biol 2009; 86: 681–689.

    Article  CAS  Google Scholar 

  21. Ramanathan M, Pinhal-Enfield G, Hao I, Leibovich SJ . Synergistic up-regulation of vascular endothelial growth factor (VEGF) expression in macrophages by adenosine A2A receptor agonists and endotoxin involves transcriptional regulation via the hypoxia response element in the VEGF promoter. Mol Biol Cell 2007; 18: 14–23.

    Article  CAS  Google Scholar 

  22. Leibovich SJ, Chen JF, Pinhal-Enfield G, Belem PC, Elson G, Rosania A et al. Synergistic up-regulation of vascular endothelial growth factor expression in murine macrophages by adenosine A2A receptor agonists and endotoxin. Am J Pathol 2002; 160: 2231–2244.

    Article  CAS  Google Scholar 

  23. Pinhal-Enfield G, Leibovich SJ . Macrophage Heterogeneity and Wound Healing. In: Sen C (eds). Advances in Wound Care. Mary-Ann Liebert, Inc.: New Rochelle, NY, vol. 2 pp 89–95 2011.

    Google Scholar 

  24. Murphree LJ, Sullivan GW, Marshall MA, Linden J . Lipopolysaccharide rapidly modifies adenosine receptor transcripts in murine and human macrophages: role of NF-kappaB in A(2A) adenosine receptor induction. Biochem J 2005; 391: 575–580.

    Article  CAS  Google Scholar 

  25. Yu L, Frith MC, Suzuki Y, Peterfreund RA, Gearan T, Sugano S et al. Characterization of genomic organization of the adenosine A2A receptor gene by molecular and bioinformatics analyses. Brain Res 2004; 1000: 156–173.

    Article  CAS  Google Scholar 

  26. Edwards JP, Zhang X, Frauwirth KA, Mosser DM . Biochemical and functional characterization of three activated macrophage populations. J Leukoc Biol 2006; 80: 1298–1307.

    Article  CAS  Google Scholar 

  27. Gordon S In: Brostoff B, Male D (eds). Immunology 8th. edn. Mosby, Edinburgh, 2001, ).

    Google Scholar 

  28. Gordon S . Macrophage heterogeneity and tissue lipids. J Clin Invest 2007; 117: 89–93.

    Article  CAS  Google Scholar 

  29. Grinberg S, Hasko G, Wu D, Leibovich SJ . Suppression of PLCbeta2 by endotoxin plays a role in the adenosine A(2A) receptor-mediated switch of macrophages from an inflammatory to an angiogenic phenotype. Am J Pathol 2009; 175: 2439–2453.

    Article  CAS  Google Scholar 

  30. Junger WG . Immune cell regulation by autocrine purinergic signalling. Nature Rev Immunol; 11: 201–212.

    Article  CAS  Google Scholar 

  31. Hasko G, Cronstein BN . Adenosine: an endogenous regulator of innate immunity. Trends Immunol 2004; 25: 33–39.

    Article  CAS  Google Scholar 

  32. Bodin P, Burnstock G . Purinergic signalling: ATP release. Neurochem Res 2001; 26: 959–969.

    Article  CAS  Google Scholar 

  33. Newby AC . Adenosine and the concept of ‘retaliatory metabolites’. Trends Biochem Sci 1981; 9: 42–44.

    Article  Google Scholar 

  34. Morello S, Ito K, Yamamura S, Lee KY, Jazrawi E, Desouza P et al. IL-1 beta and TNF-alpha regulation of the adenosine receptor (A2A) expression: differential requirement for NF-kappa B binding to the proximal promoter. J Immunol 2006; 177: 7173–7183.

    Article  CAS  Google Scholar 

  35. Chiang MC, Lee YC, Huang CL, Chern Y . cAMP-response element-binding protein contributes to suppression of the A2A adenosine receptor promoter by mutant Huntingtin with expanded polyglutamine residues. J Biol Chem 2005; 280: 14331–14340.

    Article  CAS  Google Scholar 

  36. Lee YC, Chien CL, Sun CN, Huang CL, Huang NK, Chiang MC et al. Characterization of the rat A2A adenosine receptor gene: a 4.8-kb promoter-proximal DNA fragment confers selective expression in the central nervous system. Eur J Neurosci 2003; 18: 1786–1796.

    Article  Google Scholar 

  37. Yu L, Haverty PM, Mariani J, Wang Y, Shen HY, Schwarzschild MA et al. Genetic and pharmacological inactivation of adenosine A2A receptor reveals an Egr-2-mediated transcriptional regulatory network in the mouse striatum. Physiol Genomics 2005; 23: 89–102.

    Article  CAS  Google Scholar 

  38. Ramanathan M, Hasko G, Leibovich SJ . Analysis of signal transduction pathways in macrophages using expression vectors with CMV promoters: a cautionary tale. Inflammation 2005; 29: 94–102.

    Article  CAS  Google Scholar 

  39. Zhang X, Goncalves R, Mosser DM . The isolation and characterization of murine macrophages. Curr Protoc Immunol 2008, Chapter 14: Unit 14, pp 14.1.1–14.1.14.

Download references

Acknowledgements

This work was supported by a grant from the US Public Health Service National Institutes of Health RO1-GM068636 (SJL) and RO1-GM66189 (GH). Shalini Outram was supported by a training grant from the NIH (T32-HL069752). We are grateful to Li Hao in the New Jersey Medical School Bioinformatics Center for assistance with the bio-informatic analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J Leibovich.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elson, G., Eisenberg, M., Garg, C. et al. Induction of murine adenosine A2A receptor expression by LPS: analysis of the 5′ upstream promoter. Genes Immun 14, 147–153 (2013). https://doi.org/10.1038/gene.2012.60

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2012.60

Keywords

This article is cited by

Search

Quick links