Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Measles Edmonston vaccine strain derivatives have potent oncolytic activity against osteosarcoma

Abstract

Osteosarcoma (OS) is the most common primary bone tumor affecting children and young adults, and development of metastatic disease is associated with poor prognosis. The purpose of this study was to evaluate the antitumor efficacy of virotherapy with engineered measles virus (MV) vaccine strains in the treatment of OS. Cell lines derived from pediatric patients with OS (HOS, MG63, 143B, KHOS-312H, U2-OS and SJSA1) were infected with MV expressing green fluorescent protein (MV-GFP) and MV-expressing sodium iodide symporter (MV-NIS) strains. Viral gene expression and cytotoxicity as defined by syncytial formation, cell death and eradication of cell monolayers were demonstrated. Findings were correlated with in vivo efficacy in subcutaneous, orthotopic (tibial bone) and lung metastatic OS xenografts treated with the MV derivative MV-NIS via the intratumoral or intravenous route. Following treatment, we observed decrease in tumor growth of subcutaneous xenografts (P=0.0374) and prolongation of survival in mice with orthotopic (P<0.0001) and pulmonary metastatic OS tumors (P=0.0207). Expression of the NIS transgene in MV-NIS infected tumors allowed for single photon emission computed tomography and positron emission tomography–computed tomography imaging of virus infected tumors in vivo. Our data support the translational potential of MV-based virotherapy approaches in the treatment of recurrent and metastatic OS.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Skubitz KM, D'Adamo DR . Sarcoma. Mayo Clin Proc 2007; 82: 1409–1432.

    Article  CAS  PubMed  Google Scholar 

  2. Link MP, Goorin AM, Miser AW, Green AA, Pratt CB, Belasco JB et al. The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med 1986; 314: 1600–1606.

    Article  CAS  PubMed  Google Scholar 

  3. Provisor AJ, Ettinger LJ, Nachman JB, Krailo MD, Makley JT, Yunis EJ et al. Treatment of nonmetastatic osteosarcoma of the extremity with preoperative and postoperative chemotherapy: a report from the Children's Cancer Group. J Clin Oncol 1997; 15: 76–84.

    Article  CAS  PubMed  Google Scholar 

  4. Ritter J, Bielack SS . Osteosarcoma. Ann Oncol 2010; 21 (Suppl 7): vii320–vii325.

    PubMed  Google Scholar 

  5. Msaouel P, Opyrchal M, Domingo Musibay E, Galanis E . Oncolytic measles virus strains as novel anticancer agents. Expert Opin Biol Ther 2013; 13: 483–502.

    Article  CAS  PubMed  Google Scholar 

  6. Bluming AZ, Ziegler JL . Regression of Burkitt's lymphoma in association with measles infection. Lancet 1971; 2: 105–106.

    Article  CAS  PubMed  Google Scholar 

  7. Taqi AM, Abdurrahman MB, Yakubu AM, Fleming AF . Regression of Hodgkin's disease after measles. Lancet 1981; 1: 1112.

    Article  CAS  PubMed  Google Scholar 

  8. Cutts FT, Markowitz LE . Successes and failures in measles control. J Infect Dis 1994; 170 (Suppl 1): S32–S41.

    Article  PubMed  Google Scholar 

  9. Allen C, Paraskevakou G, Liu C, Iankov ID, Msaouel P, Zollman P et al. Oncolytic measles virus strains in the treatment of gliomas. Expert Opin Biol Ther 2008; 8: 213–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Galanis E, Hartmann LC, Cliby WA, Long HJ, Peethambaram PP, Barrette BA et al. Phase I trial of intraperitoneal administration of an oncolytic measles virus strain engineered to express carcinoembryonic antigen for recurrent ovarian cancer. Cancer Res 2010; 70: 875–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Iankov ID, Msaouel P, Allen C, Federspiel MJ, Bulur PA, Dietz AB et al. Demonstration of anti-tumor activity of oncolytic measles virus strains in a malignant pleural effusion breast cancer model. Breast Cancer Res Treat 2010; 122: 745–754.

    Article  PubMed  Google Scholar 

  12. Liu C, Sarkaria JN, Petell CA, Paraskevakou G, Zollman PJ, Schroeder M et al. Combination of measles virus virotherapy and radiation therapy has synergistic activity in the treatment of glioblastoma multiforme. Clin Cancer Res 2007; 13: 7155–7165.

    Article  CAS  PubMed  Google Scholar 

  13. Myers R, Harvey M, Kaufmann TJ, Greiner SM, Krempski JW, Raffel C et al. Toxicology study of repeat intracerebral administration of a measles virus derivative producing carcinoembryonic antigen in rhesus macaques in support of a phase I/II clinical trial for patients with recurrent gliomas. Hum Gene Ther 2008; 19: 690–698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pavlos M, Ianko DI, Cory A, John CM, Veronika von M, Roberto C et al. Engineered measles virus as a novel oncolytic therapy against prostate cancer. The Prostate 2009; 69: 82–91.

    Article  Google Scholar 

  15. Russell SJ, Federspiel MJ, Peng KW, Tong C, Dingli D, Morice WG et al. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin Proc 2014; 89: 926–933.

    Article  PubMed  Google Scholar 

  16. Naniche D, Varior-Krishnan G, Cervoni F, Wild TF, Rossi B, Rabourdin-Combe C et al. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J Virol 1993; 67: 6025–6032.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Muhlebach MD, Mateo M, Sinn PL, Prufer S, Uhlig KM, Leonard VH et al. Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 2011; 480: 530–533.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Dorig RE, Marcil A, Chopra A, Richardson CD . The human CD46 molecule is a receptor for measles virus (Edmonston strain). Cell 1993; 75: 295–305.

    Article  CAS  PubMed  Google Scholar 

  19. Mateo M, Navaratnarajah CK, Syed S, Cattaneo R . The measles virus hemagglutinin beta-propeller head beta4-beta5 hydrophobic groove governs functional interactions with nectin-4 and CD46 but not with the signaling lymphocytic activation molecule. J Virol 2013; 87: 9208–9216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jurianz K, Ziegler S, Garcia-Schuler H, Kraus S, Bohana-Kashtan O, Fishelson Z et al. Complement resistance of tumor cells: basal and induced mechanisms. Mol Immunol 1999; 36: 929–939.

    Article  CAS  PubMed  Google Scholar 

  21. Surowiak P, Materna V, Maciejczyk A, Kaplenko I, Spaczynski M, Dietel M et al. CD46 expression is indicative of shorter revival-free survival for ovarian cancer patients. Anticancer Res 2006; 26: 4943–4948.

    CAS  PubMed  Google Scholar 

  22. Allen C, Vongpunsawad S, Nakamura T, James CD, Schroeder M, Cattaneo R et al. Retargeted oncolytic measles strains entering via the EGFRvIII receptor maintain significant antitumor activity against gliomas with increased tumor specificity. Cancer Res 2006; 66: 11840–11850.

    Article  CAS  PubMed  Google Scholar 

  23. Bello MJ, de Campos JM, Kusak ME, Vaquero J, Sarasa JL, Pestana A et al. Molecular analysis of genomic abnormalities in human gliomas. Cancer Genet Cytogenet 1994; 73: 122–129.

    Article  CAS  PubMed  Google Scholar 

  24. Linge C, Gewert D, Rossmann C, Bishop JA, Crowe JS . Interferon system defects in human malignant melanoma. Cancer Res 1995; 55: 4099–4104.

    CAS  PubMed  Google Scholar 

  25. Ahn BC . Sodium iodide symporter for nuclear molecular imaging and gene therapy: from bedside to bench and back. Theranostics 2012; 2: 392–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dingli D, Peng KW, Harvey ME, Greipp PR, O'Connor MK, Cattaneo R et al. Image-guided radiovirotherapy for multiple myeloma using a recombinant measles virus expressing the thyroidal sodium iodide symporter. Blood 2004; 103: 1641–1646.

    Article  CAS  PubMed  Google Scholar 

  27. Msaouel P, Iankov ID, Allen C, Aderca I, Federspiel MJ, Tindall DJ et al. Noninvasive imaging and radiovirotherapy of prostate cancer using an oncolytic measles virus expressing the sodium iodide symporter. Mol Ther 2009; 17: 2041–2048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jauregui-Osoro M, Sunassee K, Weeks AJ, Berry DJ, Paul RL, Cleij M et al. Synthesis and biological evaluation of [(18)F]tetrafluoroborate: a PET imaging agent for thyroid disease and reporter gene imaging of the sodium/iodide symporter. Eur J Nucl Med Mol Imaging 2010; 37: 2108–2116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Duprex WP, McQuaid S, Hangartner L, Billeter MA, Rima BK . Observation of measles virus cell-to-cell spread in astrocytoma cells by using a green fluorescent protein-expressing recombinant virus. J Virol 1999; 73: 9568–9575.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kubo T, Shimose S, Matsuo T, Fujimori J, Sakaguchi T, Yamaki M et al. Oncolytic vesicular stomatitis virus administered by isolated limb perfusion suppresses osteosarcoma growth. J Orthop Res 2011; 29: 795–800.

    Article  PubMed  Google Scholar 

  31. Conzelmann KK . Nonsegmented negative-strand RNA viruses: genetics and manipulation of viral genomes. Annu Rev Genet 1998; 32: 123–162.

    Article  CAS  PubMed  Google Scholar 

  32. Atsumi S, Matsumine A, Toyoda H, Niimi R, Iino T, Nakamura T et al. Oncolytic virotherapy for human bone and soft tissue sarcomas using live attenuated poliovirus. Int J Oncol 2012; 41: 893–902.

    Article  CAS  PubMed  Google Scholar 

  33. Penheiter AR, Russell SJ, Carlson SK . The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr Gene Ther 2012; 12: 33–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kumar H, Kawai T, Akira S . Toll-like receptors and innate immunity. Biochem Biophys Res Commun 2009; 388: 621–625.

    Article  CAS  PubMed  Google Scholar 

  35. Gilliet M, Cao W, Liu YJ . Plasmacytoid dendritic cells: sensing nucleic acids in viral infection and autoimmune diseases. Nat Rev Immunol 2008; 8: 594–606.

    Article  CAS  PubMed  Google Scholar 

  36. Guillerme JB, Boisgerault N, Roulois D, Menager J, Combredet C, Tangy F et al. Measles virus vaccine-infected tumor cells induce tumor antigen cross-presentation by human plasmacytoid dendritic cells. Clin Cancer Res 2013; 19: 1147–1158.

    Article  CAS  PubMed  Google Scholar 

  37. Thyrell L, Erickson S, Zhivotovsky B, Pokrovskaja K, Sangfelt O, Castro J et al. Mechanisms of Interferon-alpha induced apoptosis in malignant cells. Oncogene 2002; 21: 1251–1262.

    Article  CAS  PubMed  Google Scholar 

  38. Wimbauer F, Yang C, Shogren KL, Zhang M, Goyal R, Riester SM et al. Regulation of interferon pathway in 2-methoxyestradiol-treated osteosarcoma cells. BMC Cancer 2012; 12: 93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Grote D, Cattaneo R, Fielding AK . Neutrophils contribute to the measles virus-induced antitumor effect: enhancement by granulocyte macrophage colony-stimulating factor expression. Cancer Res 2003; 63: 6463–6468.

    CAS  PubMed  Google Scholar 

  40. Li H, Peng KW, Dingli D, Kratzke RA, Russell SJ . Oncolytic measles viruses encoding interferon beta and the thyroidal sodium iodide symporter gene for mesothelioma virotherapy. Cancer Gene Ther 2010; 17: 550–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gupta R, Emens LA . GM-CSF-secreting vaccines for solid tumors: moving forward. Discov Med 2010; 10: 52–60.

    PubMed  PubMed Central  Google Scholar 

  42. Bracarda S, Eggermont AM, Samuelsson J . Redefining the role of interferon in the treatment of malignant diseases. Eur J Cancer 2010; 46: 284–297.

    Article  CAS  PubMed  Google Scholar 

  43. Iankov ID, Allen C, Federspiel MJ, Myers RM, Peng KW, Ingle JN et al. Expression of immunomodulatory neutrophil-activating protein of Helicobacter pylori enhances the antitumor activity of oncolytic measles virus. Mol Ther 2012; 20: 1139–1147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Myers RM, Greiner SM, Harvey ME, Griesmann G, Kuffel MJ, Buhrow SA et al. Preclinical pharmacology and toxicology of intravenous MV-NIS, an oncolytic measles virus administered with or without cyclophosphamide. Clin Pharmacol Ther 2007; 82: 700–710.

    Article  CAS  PubMed  Google Scholar 

  45. Iankov ID, Blechacz B, Liu C, Schmeckpeper JD, Tarara JE, Federspiel MJ et al. Infected cell carriers: a new strategy for systemic delivery of oncolytic measles viruses in cancer virotherapy. Mol Ther 2007; 15: 114–122.

    Article  CAS  PubMed  Google Scholar 

  46. Mader EK, Maeyama Y, Lin Y, Butler GW, Russell HM, Galanis E et al. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res 2009; 15: 7246–7255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Castleton A, Dey A, Beaton B, Patel B, Aucher A, Davis DM et al. Human mesenchymal stromal cells deliver systemic oncolytic measles virus to treat acute lymphoblastic leukemia in the presence of humoral immunity. Blood 2014; 123: 1327–1335.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ianko Iankov, MD, PhD for his methodological assistance and kindly providing the anti MV nucleoprotein antibody used in this study. We also thank Mark Federspiel, PhD and the Viral Vector Production Laboratory (Mayo Clinic) for providing MV-NIS preparations used in our studies and Hirosha Geekiyanage, PhD for technical advice and helpful discussions. Support for this research provided by the Clinical Investigator Training Program and a small grant from the Department of Oncology, Mayo Clinic; and NCI/NIH grants R01CA 154348 and R01CA 136547.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Galanis.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on Cancer Gene Therapy website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domingo-Musibay, E., Allen, C., Kurokawa, C. et al. Measles Edmonston vaccine strain derivatives have potent oncolytic activity against osteosarcoma. Cancer Gene Ther 21, 483–490 (2014). https://doi.org/10.1038/cgt.2014.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2014.54

This article is cited by

Search

Quick links