Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The role of cyclophosphamide in enhancing antitumor efficacy of an adenovirus oncolytic vector in subcutaneous Syrian hamster tumors

Abstract

We have previously reported that intratumoral injection of VRX-007—an Ad5 (a species C adenovirus)-based vector overexpressing adenovirus death protein—can suppress the growth of subcutaneous HaK (hamster renal cancer) tumors. VRX-007 replication and tumor growth inhibition are enhanced when the hamsters are immunosuppressed by a high dose of cyclophosphamide (CP), an immunosuppressive and chemotherapeutic agent. Here, we report that continuous immunosuppression with CP was not required for increased oncolytic activity of VRX-007 because short-term dosing or continuous dosing with the drug yielded similar antitumor results. Prolonged viral replication was found only in animals on continuous CP treatment. We used 007-Luc, a replication-competent, luciferase-expressing vector similar to VRX-007, to investigate the replication of the vector over time. Tumor growth inhibition was similar in hamsters given CP treatment either 1 week before or 1 week after 007-Luc injection, which suggests that CP exerts its antitumor efficacy independently of vector therapy. 007-Luc did not spread far from the inoculation site, even in immunosuppressed, CP-treated animals. Our results indicate that the enhanced effectiveness that is produced by the combination of VRX-007 and CP therapies is due to their two independent mechanisms and that they do not have to be given simultaneously for the improved outcome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Toth K, Wold WS . Increasing the efficacy of oncolytic adenovirus vectors. Viruses 2010; 2: 1844–1866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wold WSM, Ison MG . Chapter: Adenoviruses. In: Knipe DM, Howley PM, (eds). Fields Virology 6th edn vol. 1. Lippincott Williams and Wilkins: Philadelphia, 2013 pp 1732–1767.

    Google Scholar 

  3. Liu TC, Galanis E, Kirn D . Clinical trial results with oncolytic virotherapy: a century of promise, a decade of progress. Nat Clin Pract Oncol 2007; 4: 101–117.

    Article  CAS  PubMed  Google Scholar 

  4. Pesonen S, Kangasniemi L, Hemminki A . Oncolytic adenoviruses for the treatment of human cancer: focus on translational and clinical data. Mol Pharm 2011; 8: 12–28.

    Article  CAS  PubMed  Google Scholar 

  5. Yamamoto M, Curiel DT . Current issues and future directions of oncolytic adenoviruses. Mol Ther 2010; 18: 243–250.

    Article  CAS  PubMed  Google Scholar 

  6. Doronin K, Toth K, Kuppuswamy M, Krajcsi P, Tollefson AE, Wold WSM . Overexpression of the ADP (E3-11.6K) protein increases cell lysis and spread of adenovirus. Virology 2003; 305: 378–387.

    Article  CAS  PubMed  Google Scholar 

  7. Doronin K, Toth K, Kuppuswamy M, Ward P, Tollefson AE, Wold WSM . Tumor-specific, replication-competent adenovirus vectors overexpressing the adenovirus death protein. J Virol 2000; 74: 6147–6155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tollefson AE, Scaria A, Hermiston TW, Ryerse JS, Wold LJ, Wold WSM . The adenovirus death protein (E3-11.6K) is required at very late stages of infection for efficient cell lysis and release of adenovirus from infected cells. J Virol 1996; 70: 2296–2306.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Doronin K, Kuppuswamy M, Toth K, Tollefson AE, Krajcsi P, Krougliak V et al. Tissue-specific, tumor-selective, replication-competent adenovirus vector for cancer gene therapy. J Virol 2001; 75: 3314–3324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Toth K, Kuppuswamy M, Shashkova EV, Spencer JF, Wold WSM . A fully replication-competent adenovirus vector with enhanced oncolytic properties. Cancer Gene Ther 2010; 17: 761–770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Toth K, Spencer JF, Tollefson AE, Kuppuswamy M, Doronin K, Lichtenstein DL et al. Cotton rat tumor model for the evaluation of oncolytic adenoviruses. Hum Gene Ther 2005; 16: 139–146.

    Article  CAS  PubMed  Google Scholar 

  12. Thomas MA, Spencer JF, La Regina MC, Dhar D, Tollefson AE, Toth K et al. Syrian hamster as a permissive immunocompetent animal model for the study of oncolytic adenovirus vectors. Cancer Res 2006; 66: 1270–1276.

    Article  CAS  PubMed  Google Scholar 

  13. Thomas MA, Spencer JF, Toth K, Sagartz JE, Phillips N, Wold WSM . Immunosuppression enhances oncolytic adenovirus replication and antitumor efficacy in the Syrian hamster model. Mol Ther 2008; 16: 1665–1673.

    Article  CAS  PubMed  Google Scholar 

  14. Dhar D, Spencer JF, Toth K, Wold WSM . Effect of preexisting immunity on oncolytic adenovirus vector INGN 007 antitumor efficacy in immunocompetent and immunosuppressed Syrian hamsters. J Virol 2009; 83: 2130–2139.

    Article  CAS  PubMed  Google Scholar 

  15. Dhar D, Spencer JF, Toth K, Wold WSM . Pre-existing immunity and passive immunity to adenovirus 5 prevents toxicity caused by an oncolytic adenovirus vector in the Syrian hamster model. Mol Ther 2009; 17: 1724–1732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Spencer JF, Sagartz JE, Wold WSM, Toth K . New pancreatic carcinoma model for studying oncolytic adenoviruses in the permissive Syrian hamster. Cancer Gene Ther 2009; 16: 912–922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sonabend AM, Ulasov IV, Han Y, Rolle CE, Nandi S, Cao D et al. Biodistribution of an oncolytic adenovirus after intracranial injection in permissive animals: a comparative study of Syrian hamsters and cotton rats. Cancer Gene Ther 2009; 16: 362–372.

    Article  CAS  PubMed  Google Scholar 

  18. Bortolanza S, Bunuales M, Otano I, Gonzalez-Aseguinolaza G, Ortiz-de-Solorzano C, Perez D et al. Treatment of pancreatic cancer with an oncolytic adenovirus expressing interleukin-12 in Syrian hamsters. Mol Ther 2009; 17: 614–622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lichtenstein DL, Spencer JF, Doronin K, Patra D, Meyer J, Shashkova EV et al. An acute toxicology study with INGN 007, an oncolytic adenovirus vector, in mice and permissive Syrian hamsters; comparisons with wild-type Ad5 and a replication-defective adenovirus vector. Cancer Gene Ther 2009; 16: 644–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ying B, Toth K, Spencer JF, Meyer J, Tollefson AE, Patra D et al. INGN 007, an oncolytic adenovirus vector, replicates in Syrian hamsters but not mice: comparison of biodistribution studies. Cancer Gene Ther 2009; 16: 625–637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu W, Fang H . Clinical trials with oncolytic adenovirus in China. Curr Cancer Drug Targets 2007; 7: 141–148.

    Article  PubMed  Google Scholar 

  22. Bonadonna G, Valagussa P, Moliterni A, Zambetti M, Brambilla C . Adjuvant cyclophosphamide, methotrexate, and fluorouracil in node-positive breast cancer—the results of 20 years of follow-up. N Engl J Med 1995; 332: 901–906.

    Article  CAS  PubMed  Google Scholar 

  23. Tada K, Ito Y, Takahashi S, Lijima K, Miyagi Y, Nishimura S . Tolerability and safety of classic cyclophosphamide, methotrexate, and fluorouracil treatment in Japanese patients with early breast cancer. Breast Cancer 2006; 13: 279–283.

    Article  PubMed  Google Scholar 

  24. de Jonge M, Huitema AD, Rodenhuis S, Beijnen JH . Clinical pharmacokinetics of cyclophosphamide. Clin Pharmacokinet 2005; 44: 1135–1164.

    Article  CAS  PubMed  Google Scholar 

  25. Cerullo V, Diaconu I, Kangasniemi L, Rajecki M, Escutenaire S, Koski A et al. Immunological effects of low-dose cyclophosphamide in cancer patients treated with oncolytic adenovirus. Mol Ther 2011; 19: 1737–1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fehr T, Sykes M . Tolerance induction in clinical transplantation. Transpl Immunol 2004; 13: 117–130.

    Article  CAS  PubMed  Google Scholar 

  27. Ferry C, Socie G . Busulfan–cyclophosphamide versus total body irradiation–cyclophosphamide as a preparative regimen before allogeneic hematopoietic stem cell transplantation for acute myeloid leukemia: what have we learned? Exp Hematol 2003; 31: 1182–1186.

    Article  CAS  PubMed  Google Scholar 

  28. Ikeda K, Ichikawa T, Wakimoto H, Silver JS, Deisboeck TS, Finkelstein D et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 1999; 5: 881–887.

    Article  CAS  PubMed  Google Scholar 

  29. Wakimoto H, Fulci G, Tyminski E, Chiocca EA . Altered expression of antiviral cytokine mRNAs associated with cyclophosphamide’s enhancement of viral oncolysis. Gene Ther 2004; 11: 214–223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kambara H, Saeki Y, Chiocca EA . Cyclophosphamide allows for in vivo dose reduction of a potent oncolytic virus. Cancer Res 2005; 65: 11255–11258.

    Article  CAS  PubMed  Google Scholar 

  31. Kurozumi K, Hardcastle J, Thakur R, Yang M, Christoforidis G, Fulci G et al. Effect of tumor microenvironment modulation on the efficacy of oncolytic virus therapy. J Natl Cancer Inst 2007; 99: 1768–1781.

    Article  CAS  PubMed  Google Scholar 

  32. Qiao J, Wang H, Kottke T, White C, Twigger K, Diaz RM et al. Cyclophosphamide facilitates antitumor efficacy against subcutaneous tumors following intravenous delivery of reovirus. Clin Cancer Res 2008; 14: 259–269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lun XQ, Jang J, Tang N, Deng H, Head R, Bell JC et al. Efficacy of systemically administered oncolytic vaccinia virotherapy for malignant gliomas is enhanced by combination therapy with rapamycin and cyclophosphamide. Clin Cancer Res 2009; 15: 2777–2788.

    Article  CAS  PubMed  Google Scholar 

  34. Fulci G, Breymann L, Gianni D, Kurozomi K, Rhee SS, Yu J et al. Cyclophosphamide enhances glioma virotherapy inhibiting innate immune responses. Proc Natl Acad Sci USA 2006; 103: 12873–12878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Thomas MA, Spencer JF, Wold WSM . Use of the Syrian hamster as an animal model for oncolytic adenovirus vectors. In: Tollefson AE, Wold WSM, (eds). Methods in Molecular Medicine 2nd edn vol. 1. Humana Press: Totowa, 2007 pp 169–183.

    Google Scholar 

  36. Lichtenstein DL, Toth K, Doronin K, Tollefson AE, Wold WSM . Functions and mechanisms of action of the adenovirus E3 proteins. Int Rev Immunol 2004; 23: 75–111.

    Article  CAS  PubMed  Google Scholar 

  37. Harter ML, Shanmugam G, Wold WS, Green M . Detection of adenovirus type 2-induced early polypeptides using cycloheximide pretreatment to enhance viral protein synthesis. J Virol 1976; 19: 232–242.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Diaconu I, Cerullo V, Escutenaire S, Kanerva A, Bauerschmitz GJ, Hernandez-Alcoceba R et al. Human adenovirus replication in immunocompetent Syrian hamsters can be attenuated with chlorpromazine or cidofovir. J Gene Med 2010; 12: 435–445.

    Article  CAS  PubMed  Google Scholar 

  39. Guse K, Dias JD, Bauerschmitz G, Hakkarainen T, Aavik E, Ranki T et al. Luciferase imaging for evaluation of oncolytic adenovirus replication in vivo. Gene Ther 2007; 14: 902–911.

    Article  CAS  PubMed  Google Scholar 

  40. Ignowski JM, Schaffer DV . Kinetic analysis and modeling of firefly luciferase as a quantitative reporter gene in live mammalian cells. Biotechnol Bioeng 2004; 86: 827–834.

    Article  CAS  PubMed  Google Scholar 

  41. Sauthoff H, Hu J, Maca C, Goldman M, Heitner S, Yee H et al. Intratumoral spread of wild-type adenovirus is limited after local injection of human xenograft tumors: virus persists and spreads systemically at late time points. Hum Gene Ther 2003; 14: 425–433.

    Article  CAS  PubMed  Google Scholar 

  42. Yun CO . Overcoming the extracellular matrix barrier to improve intratumoral spread and therapeutic potential of oncolytic virotherapy. Curr Opin Mol Ther 2008; 10: 356–361.

    PubMed  Google Scholar 

  43. Wein LM, Wu JT, Kirn DH . Validation and analysis of a mathematical model of a replication-competent oncolytic virus for cancer treatment: implications for virus design and delivery. Cancer Res 2003; 63: 1317–1324.

    CAS  PubMed  Google Scholar 

  44. Currier MA, Adams LC, Mahller YY, Cripe TP . Widespread intratumoral virus distribution with fractionated injection enables local control of large human rhabdomyosarcoma xenografts by oncolytic herpes simplex viruses. Cancer Gene Ther 2005; 12: 407–416.

    Article  CAS  PubMed  Google Scholar 

  45. Hallden G, Hill R, Wang Y, Anand A, Liu TC, Lemoine NR et al. Novel immunocompetent murine tumor models for the assessment of replication-competent oncolytic adenovirus efficacy. Mol Ther 2003; 8: 412–424.

    Article  CAS  PubMed  Google Scholar 

  46. Harrison D, Sauthoff H, Heitner S, Jagirdar J, Rom WN, Hay JG . Wild-type adenovirus decreases tumor xenograft growth, but despite viral persistence complete tumor responses are rarely achieved—deletion of the viral E1b-19-kD gene increases the viral oncolytic effect. Hum Gene Ther 2001; 12: 1323–1332.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by grant CA118022 from the National Institutes of Health. The VRX-007 vector was provided by VirRx, and WSMW, KT and AET own stocks in the company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Toth.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Cancer Gene Therapy website .

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Young, B., Spencer, J., Ying, B. et al. The role of cyclophosphamide in enhancing antitumor efficacy of an adenovirus oncolytic vector in subcutaneous Syrian hamster tumors. Cancer Gene Ther 20, 521–530 (2013). https://doi.org/10.1038/cgt.2013.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2013.49

Keywords

This article is cited by

Search

Quick links