Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

A review of RGD-functionalized nonviral gene delivery vectors for cancer therapy

Abstract

The development of effective treatments that enable many patients suffering from cancer to be successfully cured is highly demanded. Angiogenesis, which is a process for the formation of new capillary blood vessels, has a crucial role in solid tumor progression and the development of metastasis. Antiangiogenic therapy designed to prevent tumor angiogenesis, thereby arresting the growth or spread of tumors, has emerged as a non-invasive and safe option for cancer treatment. Due to the fact that integrin receptors are overexpressed on the surface of angiogenic endothelial cells, various strategies have been made to develop targeted delivery systems for cancer gene therapy utilizing integrin-targeting peptides with an exposed arginine–glycine–aspartate (RGD) sequence. The aim of this review is to summarize the progress and prospect of RGD-functionalized nonviral vectors toward targeted delivery of genetic materials in order to achieve an efficient therapeutic outcome for cancer gene therapy, including antiangiogenic therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Edelstein ML, Abedi MR, Wixon J . Gene therapy clinical trials worldwide to 2007—an update. J Gene Med 9: 833–842.

    PubMed  Google Scholar 

  2. Sheridan C . Gene therapy finds its niche. Nat Biotechnol 2011; 29: 121–128.

    CAS  PubMed  Google Scholar 

  3. El-Aneed A . Current strategies in cancer gene therapy. Eur J Pharmacol 2004; 498: 1–8.

    CAS  PubMed  Google Scholar 

  4. Guinn BA, Mulherkar R . International progress in cancer gene therapy. Cancer Gene Ther 2008; 15: 765–775.

    CAS  PubMed  Google Scholar 

  5. Folkman J, Shing Y . Angiogenesis. J Biol Chem 1992; 267: 10931–10934.

    CAS  PubMed  Google Scholar 

  6. Folkman J . Tumor angiogenesis: therapeutic implications. N Engl J Med 1971; 285: 1182–1186.

    CAS  PubMed  Google Scholar 

  7. Tonini T, Rossi F, Claudio PP . Molecular basis of angiogenesis and cancer. Oncogene 2003; 22: 6549–6556.

    CAS  PubMed  Google Scholar 

  8. Folkman J . Angiogenesis. Annu Rev Med 2006; 57: 1–18.

    CAS  PubMed  Google Scholar 

  9. Feldman AL, Libutti SK . Progress in antiangiogenic gene therapy of cancer. Cancer 2000; 89: 1181–1194.

    CAS  PubMed  Google Scholar 

  10. Ruoslahti E . RGD and other recognition sequences for integrins. Annu Rev Cell Dev Biol 1996; 12: 697–715.

    CAS  PubMed  Google Scholar 

  11. Kasono K, Blackwell JL, Douglas JT, Dmitriev I, Strong TV, Reynolds P et al. Selective gene delivery to head and neck cancer cells via an integrin targeted adenoviral vector. Clin Cancer Res 1999; 5: 2571–2579.

    CAS  PubMed  Google Scholar 

  12. Matilainen H, Mäkelä AR, Riikonen R, Saloniemi T, Korhonen E, Hyypiä T et al. RGD motifs on the surface of baculovirus enhance transduction of human lung carcinoma cells. J Biotechnol 2006; 125: 114–126.

    CAS  PubMed  Google Scholar 

  13. Temming K, Schiffelers RM, Molema G, Kok RJ . RGD-based strategies for selective delivery of therapeutics and imaging agents to the tumor vasculature. Drug Resist Update 2005; 8: 381–402.

    CAS  Google Scholar 

  14. Eldar-Boock A, Miller K, Sanchis J, Lupu R, Vicent MJ, Satchi-Fainaro R . Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel. Biomaterials 2011; 32: 3862–3874.

    CAS  PubMed  Google Scholar 

  15. Mulligan RC . The basic science of gene therapy. Science 1993; 260: 926–932.

    CAS  PubMed  Google Scholar 

  16. Liekens S, De Clercq E, Neyts J . Angiogenesis: regulators and clinical applications. Biochem Pharmacol 2001; 61: 253–270.

    CAS  PubMed  Google Scholar 

  17. Folkman J . Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1995; 1: 27–31.

    CAS  PubMed  Google Scholar 

  18. Pierschbacher MD, Ruoslahti E . Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984; 309: 30–33.

    CAS  PubMed  Google Scholar 

  19. Akiyama SK, Yamada KM . Synthetic peptides competitively inhibit both direct binding to fibroblasts and functional biological assays for the purified cell-binding domain of fibronectin. J Biol Chem 1985; 260: 10402–10405.

    CAS  PubMed  Google Scholar 

  20. Cheresh DA, Spiro RC . Biosynthetic and functional properties of an Arg-Gly-Asp-directed receptor involved in human melanoma cell attachment to vitronectin, fibrinogen, and von Willebrand factor. J Biol Chem 1987; 262: 17703–17711.

    CAS  PubMed  Google Scholar 

  21. Koivunen E, Wang B, Ruoslahti E . Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of the RGD-directed integrins. Nat Biotechnol 1995; 13: 265–270.

    CAS  Google Scholar 

  22. Bogdanowich-Knipp SJ, Chakrabarti S, Williams TD, Dillman RK, Siahaan TJ . Solution stability of linear vs. cyclic RGD peptides. J Pept Res 1999; 53: 530–541.

    CAS  PubMed  Google Scholar 

  23. Geiger T, Clarke S . Deamidation isomerization, and racemization at asparaginyl and aspartyl residues in peptides. J Biol Chem 1987; 262: 785–794.

    CAS  PubMed  Google Scholar 

  24. Wakankar AA, Borchardt RT . Formulation consideration for proteins susceptible to asparagine deamidation and aspartate isomerization. J Pharm Sci 2006; 95: 2321–2336.

    CAS  PubMed  Google Scholar 

  25. Pack DW, Hoffman AS, Pun S, Stayton PS . Design and development of polymers for gene delivery. Nat Rev Drug Discovery 2005; 4: 581–593.

    CAS  PubMed  Google Scholar 

  26. Lee D, Singha K, Park J, Jo S, Kim WJ . Enhanced gene delivery by palmitic acid-conjugated low molecular weight polyethylenimine. Macromol Res 2012; 20: 244–249.

    CAS  Google Scholar 

  27. Singha K, Namgung R, Kim WJ . Polymers in small-interfering RNA delivery. Nucleic Acid Ther 2011; 21: 133–147.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Morille M, Passirani C, Vonarbourg A, Clavreul A, Benoit JP . Progress in developing cationic vectors for non-viral systemic gene therapy against cancer. Biomaterials 2008; 29: 3477–3496.

    CAS  PubMed  Google Scholar 

  29. Park J, Kim WJ . Current status of gene delivery: spotlight on nanomaterial-polymer hybrids. J Drug Targeting 2012; 20: 648–666.

    CAS  Google Scholar 

  30. Namgung R, Singha K, Yu MK, Jon S, Kim YS, Ahn Y et al. Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 2010; 31: 4204–4213.

    CAS  PubMed  Google Scholar 

  31. Namgung R, Zhang Y, Fang QL, Singha K, Lee HJ, Kwon IK et al. Multifunctional silica nanotubes for dual-modality gene delivery and MR imaging. Biomaterials 2011; 32: 3042–3052.

    CAS  PubMed  Google Scholar 

  32. Zhao XB, Lee RJ . Tumor-selective targeted delivery of genes and antisense oligodeoxyribonucleotides via the folate receptor. Adv Drug Deliver Rev 2004; 56: 1193–1204.

    CAS  Google Scholar 

  33. Son S, Singha K, Kim WJ . Bioreducible BPEI-SS-PEG-cNGR polymer as a tumor targeted nonviral gene carrier. Biomaterials 2010; 31: 6344–6354.

    CAS  PubMed  Google Scholar 

  34. Bellocq NC, Pun SH, Jensen GS, Transferrin-containing Davis ME. . cyclodextrin polymer-based particles for tumor-targeted gene delivery. Bioconjugate Chem 2003; 14: 1122–1132.

    CAS  Google Scholar 

  35. Pan X, Guan J, Yoo J-W, Epstein AJ, Lee LJ, Lee RJ . Cationic lipid-coated magnetic nanoparticles associated with transferring for gene delivery. Int J Pharm 2008; 358: 263–270.

    CAS  PubMed  Google Scholar 

  36. Suh W, Chung JK, Park SH, Kim SW . Anti-JL1 antibody-conjugated poly(L-lysine) for targeted gene delivery to leukemia T cells. J Control Release 2001; 72: 171–178.

    CAS  PubMed  Google Scholar 

  37. Lee CH, Hsiao M, Tseng YL, Chang FH . Enhanced gene delivery to HER-2-overexpressing breast cancer cells by modified immunolipoplexes conjugated with the anti-HER-2 antibody. J Biomed Sci 2003; 10: 337–344.

    CAS  PubMed  Google Scholar 

  38. Lungwitz U, Breunig M, Blunk T, Göpferich A . Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 2005; 60: 247–266.

    CAS  PubMed  Google Scholar 

  39. Suh W, Han SO, Yu L, Kim SW . An angiogenic, endothelial-cell-targeted polymeric gene carrier. Mol Ther 2002; 6: 664–672.

    CAS  PubMed  Google Scholar 

  40. Kim WJ, Yockman JW, Lee M, Jeong JH, Kim YH, Kim SW . Soluble Flt-1 gene delivery using PEI-g-PEG-RGD conjugate for anti-angiogenesis. J Control Release 2005; 106: 224–234.

    CAS  PubMed  Google Scholar 

  41. Kim WJ, Yockman JW, Jeong JH, Christensen LV, Lee M, Kim YH et al. Anti-angiogenic inhibition of tumor growth by systemic delivery of PEI-g-PEG-RGD/pCMV-sFlt-1 complexes in tumor-bearing mice. J Control Release 2006; 114: 381–388.

    CAS  PubMed  Google Scholar 

  42. Fenske DB, MacLachlan I, Cullis PR . Long-circulating vectors for the systemic delivery of genes. Curr Opin Mol Ther 2001; 3: 153–158.

    CAS  PubMed  Google Scholar 

  43. Dash PR, Read ML, Barrett LB, Wolfert MA, Seymour LW . Factors affecting blood clearance and in vivo distribution of polyelectrolyte complexes for gene delivery. Gene Ther 1999; 6: 643–650.

    CAS  PubMed  Google Scholar 

  44. Yockman JW, Kim WJ, Chang C-W, Kim SW . Non-viral delivery of interleukin-2 and soluble Flk-1 inhibits metastatic and primary tumor growth in renal cell carcinoma. Gene Ther 2007; 14: 1399–1405.

    CAS  PubMed  Google Scholar 

  45. Kim J, Kim SW, Kim WJ . PEI-g-PEG-RGD/small interference RNA polyplex-mediated silencing of vascular endothelial growth factor receptor and its potential as an anti-angiogenic tumor therapeutic strategy. Oligonucleotides 2011; 21: 101–107.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Schiffelers RM, Ansari A, Xu J, Zhou Q, Tang Q, Storm G et al. Cancer siRNA therapy by tumor selective delivery with ligand-targeted sterically stabilized nanoparticle. Nucleic Acids Res 2004; 32: e149.

    PubMed  PubMed Central  Google Scholar 

  47. Erbacher P, Remy J-S, Behr J-P . Gene transfer with synthetic virus-like particles via the integrin-mediated endocytosis pathway. Gene Ther 1999; 6: 138–145.

    CAS  PubMed  Google Scholar 

  48. Bai J, Acan B, Ghahary A, Ritchie B, Somayaji V, Uludag H . Poly(ethyleneimine)/arginine-glycine-aspartic acid conjugates prepared with N-succinimidyl 3-(2-pyridyldithio)propionate: an investigation of peptide coupling and conjugate stability. J Polym Sci Pol Chem 2004; 42: 6143–6156.

    CAS  Google Scholar 

  49. Namgung R, Nam S, Kim SK, Son S, Singha K, Kwon J-S et al. An acid-labile temperature-responsive sol-gel reversible polymer for enhanced gene delivery to the myocardium and skeletal muscle cells. Biomaterials 2009; 30: 5225–5233.

    CAS  PubMed  Google Scholar 

  50. Park I-K, Singha K, Arote RB, Choi Y-J, Kim WJ, Cho C-S . pH-responsive polymers as gene carriers. Macromol Rapid Commun 2010; 31: 1122–1133.

    CAS  PubMed  Google Scholar 

  51. Son S, Kim WJ . Biodegradable nanoparticles modified by branced polyethylenimine for plasmid DNA delivery. Biomaterials 2010; 31: 133–143.

    CAS  PubMed  Google Scholar 

  52. Breunig M, Lungwitz U, Liebl R, Fontanari C, Klar J, Kurtz A et al. Gene delivery with low molecular weight linear polyethylenimines. J Gene Med 2005; 7: 1287–1298.

    CAS  PubMed  Google Scholar 

  53. Namgung R, Kim J, Singha K, Kim C-H, Kim WJ . Synergistic effect of low cytotoxic linear polyethylenimine and multiarm polyethylene glycol: study of physicochemical properties and in vitro gene transfection. Mol Pharm 2009; 6: 1826–1835.

    CAS  PubMed  Google Scholar 

  54. Kim T, Kim SW . Bioreducible polymers for gene delivery. React Funct Polym 2011; 71: 344–349.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Christensen LV, Chang CW, Kim WJ, Kim SW, Zhong Z, Lin C et al. Reducible poly(amido ethylenimine)s designed for triggered intracellular gene delivery. Bioconjugate Chem 2006; 17: 1233–1240.

    CAS  Google Scholar 

  56. Son S, Namgung R, Kim J, Singha K, Kim WJ . Bioreducible polymers for gene silencing and delivery. Acc Chem Res 2012; 45: 1100–1112.

    CAS  PubMed  Google Scholar 

  57. Sun YX, Zeng X, Meng QF, Zhang XZ, Cheng SX, Zhuo RX . The influence of RGD addition on the gene transfer characteristics of disulfide-containing polyethyleneimine/DNA complexes. Biomaterials 2008; 29: 4356–4365.

    CAS  PubMed  Google Scholar 

  58. Kabanov AV, Kabanov VA . DNA complexes with polycations for the delivery of genetic material into cells. Bioconjugate Chem 1995; 6: 7–20.

    CAS  Google Scholar 

  59. Maruyama K, Iwasaki F, Takizawa T, Yanagie H, Niidome T, Yamada E et al. Novel receptor-mediated gene delivery system comprising plasmid/protamine/sugar-containing polyanion ternary complex. Biomaterials 2004; 25: 3267–3273.

    CAS  PubMed  Google Scholar 

  60. Plank C, Mechtler K, Szoka FC, Wagner E . Activation of the complement system by synthetic DNA complexes: a potential barrier for intravenous gene delivery. Hum Gene Ther 1996; 7: 1437–1446.

    CAS  PubMed  Google Scholar 

  61. Ruponen M, Ylä-Herttuala S, Urtti A . Interactions of polymeric and liposomal gene delivery systems with extracellular glycosaminoglycans: physicochemical and transfection studies. Biochim Biophys Acta 1999; 1415: 331–341.

    CAS  PubMed  Google Scholar 

  62. Trubetskoy VS, Wong SC, Subbotin V, Budker VG, Loomis A, Hagstrom JE et al. Recharging cationic DNA complexes with highly charged polyanions for in vitro and in vivo gene delivery. Gene Ther 2003; 10: 261–271.

    CAS  PubMed  Google Scholar 

  63. Koyama Y, Yamada E, Ito T, Mizutani Y, Yamaoka T . Sugar-containing polyanions as a self-assembled coating of plasmid/polycation complexes for receptor-mediated gene delivery. Macromol Biosci 2002; 2: 251–256.

    CAS  Google Scholar 

  64. Arigita C, Zuidam NJ, Crommelin DJ, Hennink WE . Association and dissociation characteristics of polymer/DNA complexes used for gene delivery. Pharm Res 1999; 16: 1534–1541.

    CAS  PubMed  Google Scholar 

  65. Koyama Y, Ito T, Matsumoto H, Tanioka A, Okuda T, Yamaura N et al. Novel poly(ethylene glycol) derivatives with carboxylic acid pendant groups: synthesis and their protection and enhancing effect on non-viral gene transfection systems. J Biomater Sci Polym Ed 2003; 14: 515–531.

    CAS  PubMed  Google Scholar 

  66. Sakae M, Ito T, Yoshihara C, Iida-Tanaka N, Yanagie H, Eriguchi M et al. Highly efficient in vivo gene transfection by plasmid/PEI complexes coated by anionic PEG derivatives bearing carboxyl groups and RGD peptide. Biomed Pharmacother 2008; 62: 448–453.

    CAS  PubMed  Google Scholar 

  67. Oishi J, Ijuin M, Sonoda T, Kang J-H, Kawamura K, Mori T et al. A protein kinase signal-responsive gene carrier modified RGD peptide. Bioorg Med Chem Lett 2006; 16: 5740–5743.

    CAS  PubMed  Google Scholar 

  68. Carlson CC, Smithers SL, Yeh KA, Burnham LL, Dransfield DT . Protein kinase A regulatory subunits in colon cancer. Neoplasia 1999; 4: 373–378.

    Google Scholar 

  69. Kenneth WL, Barbara L, Richard MN . Retinoic acid increases cyclic AMP-dependent protein kinase activity in murine melanoma cells. J Biol Chem 1980; 255: 5999–6002.

    Google Scholar 

  70. Katayama Y, Fujii K, Ito E, Sakakihara S, Sonoda T, Murata M et al. Intracellular signal-responsive artificial gene regulation for novel gene delivery. Biomacromolecules 2002; 3: 905–909.

    CAS  PubMed  Google Scholar 

  71. Oishi J, Kawamura K, Kang J-H, Kodama K, Sonoda T, Murata M et al. An intracellular kinase signal-responsive gene carrier for disordered cell-specific gene therapy. J Control Release 2006; 110: 431–436.

    CAS  PubMed  Google Scholar 

  72. Kakizawa Y, Kataoka K . Block copolymer micelles for delivery of gene and related compounds. Adv Drug Deliv Rev 2002; 54: 203–222.

    CAS  PubMed  Google Scholar 

  73. Osada K, Kataoka K . Drug and gene delivery based on supramolecular assembly of PEG-polypeptide hybrid block copolymers. Adv Polym Sci 2006; 202: 113–153.

    CAS  Google Scholar 

  74. Akagi D, Oba M, Koyama H, Nishiyama N, Fukushima S, Miyata T et al. Biocompatible micellar nanovectors achieve efficient gene transfer to vascular lesions without cytotoxicity and thrombus formation. Gene Ther 2007; 14: 1029–1038.

    CAS  PubMed  Google Scholar 

  75. Miyata K, Kakizawa Y, Nishiyama N, Harada A, Yamasaki Y, Koyama H et al. Block catiomer polyplexes with regulated densities of charge and disulfide cross-linking directed to enhance gene expression. J Am Chem Soc 2004; 126: 2355–2361.

    CAS  PubMed  Google Scholar 

  76. Miyata K, Kakizawa Y, Nishiyama N, Yamasaki Y, Watanabe T, Kohara M et al. Freeze-dried formulations for in vivo gene delivery of PEGylated polyplex micelles with disulfide crosslinked cores to the liver. J Control Release 2005; 109: 15–23.

    CAS  PubMed  Google Scholar 

  77. Oba M, Fukushima S, Kanayama N, Aoyagi K, Nishiyama N, Koyama H et al. Cyclic RGD peptide-conjugated polyplex micelles as a targetable gene delivery system directed to cells possessing αvβ3 and αvβ5 integrins. Bioconjugate Chem 2007; 18: 1415–1423.

    CAS  Google Scholar 

  78. Kagaya H, Oba M, Miura Y, Koyama H, Ishii T, Shimada T et al. Impact of polyplex micelles installed with cyclic RGD peptides as ligand on gene delivery to vascular lesions. Gene Ther 2012; 19: 61–69.

    CAS  PubMed  Google Scholar 

  79. Oba M, Aoyagi K, Miyata K, Matsumoto Y, Itaka K, Nishiyama N et al. Polyplex micelles with cyclic RGD peptide ligands and disulfide cross-links directing to the enhanced transfection via controlled intracellular trafficking. Mol Pharm 2008; 5: 1080–1092.

    CAS  PubMed  Google Scholar 

  80. Mickler FM, Vachutinsky Y, Oba M, Miyata K, Nishiyama N, Kataoka K et al. Effect of integrin targeting and PEG shielding on polyplex micelle internalization studied by live-cell imaging. J Control Release 2011; 156: 364–373.

    CAS  PubMed  Google Scholar 

  81. Vachutinsky Y, Oba M, Miyata K, Hiki S, Kano MR, Nishiyama N et al. Antiangiogenic gene therapy of experimental pancreatic tumor by sFlt-1 plasmid DNA carried by RGD-modified crosslinked polyplex micelles. J Control Release 2011; 149: 51–57.

    CAS  PubMed  Google Scholar 

  82. Kaneda Y, Saeki Y, Morishita R . Gene therapy using HVJ-liposomes: the best of both worlds? Mol Med Today 1999; 5: 298–303.

    CAS  PubMed  Google Scholar 

  83. Chander R, Schreier H . Artificial viral envelopes containing recombinant human immunodeficiency virus (HIV) gp 160. Life Sci 1992; 50: 481–489.

    CAS  PubMed  Google Scholar 

  84. Müller K, Nahde T, Fahr A, Müller R, Brüsselbach S . Highly efficient transduction of endothelial cells by targeted artificial virus-like particles. Cancer Gene Ther 2001; 8: 107–117.

    PubMed  Google Scholar 

  85. Anwer K, Kao G, Rolland A, Driessen WH, Sullivan SM . Peptide-mediated gene transfer of cationic lipid/plasmid DNA complexes to endothelial cells. J Drug Target 2004; 12: 215–221.

    CAS  PubMed  Google Scholar 

  86. Thompson B, Mignet N, Hofland H, Lamons D, Seguin J, Nicolazzi C et al. Neutral postgrafted colloidal particles for gene delivery. Bioconjugate Chem 2005; 16: 608–614.

    CAS  Google Scholar 

  87. Harvie P, Dutzar B, Galbraith T, Cudmore S, O’Mahony D, Anklesaria P et al. Targeting of lipid-protamine-DNA (LPD) lipopolyplexes using RGD motifs. J Liposome Res 2003; 13: 231–247.

    CAS  PubMed  Google Scholar 

  88. Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H . Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J Control Release 2011; 153: 141–148.

    CAS  PubMed  Google Scholar 

  89. Jiang J, Yang S-J, Wang J-C, Yang L-J, Xu Z-Z, Yang T et al. Sequential treatment of drug-resistant tumors with RGD-modified liposomes containing siRNA or doxorubicin. Eur J Pharm Biopharm 2010; 76: 170–178.

    CAS  PubMed  Google Scholar 

  90. Smith LC, Duguid J, Wadhwa MS, Logan MJ, Tung C-H, Edwards V et al. Synthetic peptide-based DNA complexes for nonviral gene delivery. Adv Drug Deliv Rev 1998; 30: 115–131.

    CAS  PubMed  Google Scholar 

  91. Parker AL, Collins L, Zhang X, Fabre JW . Exploration of peptide motifs for potent non-viral gene delivery highly selective for dividing cells. J Gene Med 2005; 7: 1545–1554.

    CAS  PubMed  Google Scholar 

  92. Aoki Y, Hosaka S, Kawa S, Kiyosawa K . Potential tumor-targeting peptide vector of histidylated oligolysine conjugated to a tumor-homing RGD motif. Cancer Gene Ther 2001; 8: 783–787.

    CAS  PubMed  Google Scholar 

  93. Moore NM, Barbour TR, Sakiyama-Elbert SE . Synthesis and characterization of four-arm poly(ethylene glycol)-based gene delivery vehicles coupled to integrin and DNA-binding peptides. Mol Pharm 2007; 5: 140–150.

    PubMed  Google Scholar 

  94. Moore NM, Sakiyama-Elbert SE . Analysis of cell binding and internalization of multivalent PEG-based gene delivery vehicles. IEEE Trans Nanobiosci 2012; 11: 54–61.

    Google Scholar 

  95. Isberg RR . Discrimination between intracellular uptake and surface adhesion of bacterial pathogens. Science 1991; 252: 934–938.

    CAS  PubMed  Google Scholar 

  96. Kornberg LJ, Earp HS, Turner CE, Prockop C, Juliano RL . Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of beta 1 integrins. Proc Natl Acad Sci USA 1991; 88: 8392–8396.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant of the Korea Health technology R&D Project, Ministry of Health & Welfare, Republic of Korea (A111803). We thank Dr Matthew Hurley for the proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W J Kim.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J., Singha, K., Son, S. et al. A review of RGD-functionalized nonviral gene delivery vectors for cancer therapy. Cancer Gene Ther 19, 741–748 (2012). https://doi.org/10.1038/cgt.2012.64

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2012.64

Keywords

This article is cited by

Search

Quick links