Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Dendritic cell-directed lentivector vaccine induces antigen-specific immune responses against murine melanoma

Abstract

Lentivectors are potential vaccine delivery vehicles because they can efficiently transduce a variety of non-dividing cells, including antigen-presenting cells, and do not cause expression of extra viral proteins. To improve safety while retaining efficiency, a dendritic cell (DC)-specific lentivector was constructed by pseudotyping the vector with an engineered viral glycoprotein derived from Sindbis virus. We assessed the level of anti-tumor immunity conferred by this engineered lentivector encoding the melanoma antigen gp100 in a mouse model. Footpad injection of the engineered lentivectors results in the best antigen-specific immune response as compared with subcutaneous and intraperitoneal injections. A single prime vaccination of the engineered lentivectors can elicit a high frequency (up to 10%) of gp100-specific CD8+ T cells in peripheral blood 3 weeks after the vaccination and this response will be maintained at around 5% for up to 8 weeks. We found that these engineered lentivectors elicited relatively low levels of anti-vector neutralizing antibody responses. Importantly, direct injection of this engineered lentivector inhibited the growth of aggressive B16 murine melanoma. These data suggest that DC-specific lentivectors can be a novel and alternative vaccine carrier with the potential to deliver effective anti-tumor immunity for cancer immunotherapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  Google Scholar 

  2. Lanzavecchia A, Sallusto F . Regulation of T cell immunity by dendritic cells. Cell 2001; 106: 263–266.

    Article  CAS  Google Scholar 

  3. Guermonprez P, Valladeau J, Zitvogel L, Thery C, Amigorena S . Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 2002; 20: 621–667.

    Article  CAS  Google Scholar 

  4. Steinman RM . Dendritic cells in vivo: a key target for a new vaccine science. Immunity 2008; 29: 319–324.

    Article  CAS  Google Scholar 

  5. Schuler G, Schuler-Thurner B, Steinman RM . The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 2003; 15: 138–147.

    Article  CAS  Google Scholar 

  6. Ribas A, Butterfield LH, Glaspy JA, Economou JS . Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol 2003; 21: 2415–2432.

    Article  CAS  Google Scholar 

  7. Banchereau J, Palucka AK . Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 2005; 5: 296–306.

    Article  CAS  Google Scholar 

  8. Farkas A, Conrad C, Tonel G, Borbenyi Z, Kemeny L, Dobozy A et al. Current state and perspectives of dendritic cell vaccination in cancer immunotherapy. Skin Pharmacol Physiol 2006; 19: 124–131.

    Article  CAS  Google Scholar 

  9. Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ . Dendritic cell immunotherapy: mapping the way. Nat Med 2004; 10: 475–480.

    Article  CAS  Google Scholar 

  10. Tacken PJ, de Vries IJ, Torensma R, Figdor CG . Dendritic-cell immunotherapy: from ex vivo loading to in vivo targeting. Nat Rev Immunol 2007; 7: 790–802.

    Article  CAS  Google Scholar 

  11. Tacken PJ, Torensma R, Figdor CG . Targeting antigens to dendritic cells in vivo. Immunobiology 2006; 211: 599–608.

    Article  CAS  Google Scholar 

  12. Waehler R, Russell SJ, Curiel DT . Engineering targeted viral vectors for gene therapy. Nat Rev Genet 2007; 8: 573–587.

    Article  CAS  Google Scholar 

  13. Humrich J, Jenne L . Viral vectors for dendritic cell-based immunotherapy. Curr Top Microbiol Immunol 2003; 276: 241–259.

    CAS  PubMed  Google Scholar 

  14. Tatsis N, Ertl HC . Adenoviruses as vaccine vectors. Mol Ther 2004; 10: 616–629.

    Article  CAS  Google Scholar 

  15. Kaplan JM, Yu Q, Piraino ST, Pennington SE, Shankara S, Woodworth LA et al. Induction of antitumor immunity with dendritic cells transduced with adenovirus vector-encoding endogenous tumor-associated antigens. J Immunol 1999; 163: 699–707.

    CAS  PubMed  Google Scholar 

  16. Barouch DH, Pau MG, Custers JH, Koudstaal W, Kostense S, Havenga MJ et al. Immunogenicity of recombinant adenovirus serotype 35 vaccine in the presence of pre-existing anti-Ad5 immunity. J Immunol 2004; 172: 6290–6297.

    Article  CAS  Google Scholar 

  17. Brossart P, Goldrath AW, Butz EA, Martin S, Bevan MJ . Virus-mediated delivery of antigenic epitopes into dendritic cells as a means to induce CTL. J Immunol 1997; 158: 3270–3276.

    CAS  PubMed  Google Scholar 

  18. Temme A, Morgenroth A, Schmitz M, Weigle B, Rohayem J, Lindemann D et al. Efficient transduction and long-term retroviral expression of the melanoma-associated tumor antigen tyrosinase in CD34(+) cord blood-derived dendritic cells. Gene Ther 2002; 9: 1551–1560.

    Article  CAS  Google Scholar 

  19. Song ES, Lee V, Surh CD, Lynn A, Brumm D, Jolly DJ et al. Antigen presentation in retroviral vector-mediated gene transfer in vivo. Proc Natl Acad Sci USA 1997; 94: 1943–1948.

    Article  CAS  Google Scholar 

  20. Breckpot K, Aerts JL, Thielemans K . Lentiviral vectors for cancer immunotherapy: transforming infectious particles into therapeutics. Gene Ther 2007; 14: 847–862.

    Article  CAS  Google Scholar 

  21. Unutmaz D, KewalRamani VN, Marmon S, Littman DR . Cytokine signals are sufficient for HIV-1 infection of resting human T lymphocytes. J Exp Med 1999; 189: 1735–1746.

    Article  CAS  Google Scholar 

  22. Schroers R, Sinha I, Segall H, Schmidt-Wolf IG, Rooney CM, Brenner MK et al. Transduction of human PBMC-derived dendritic cells and macrophages by an HIV-1-based lentiviral vector system. Mol Ther 2000; 1: 171–179.

    Article  CAS  Google Scholar 

  23. Koya RC, Kimura T, Ribas A, Rozengurt N, Lawson GW, Faure-Kumar E et al. Lentiviral vector-mediated autonomous differentiation of mouse bone marrow cells into immunologically potent dendritic cell vaccines. Mol Ther 2007; 15: 971–980.

    Article  CAS  Google Scholar 

  24. Palmowski MJ, Lopes L, Ikeda Y, Salio M, Cerundolo V, Collins MK . Intravenous injection of a lentiviral vector encoding NY-ESO-1 induces an effective CTL response. J Immunol 2004; 172: 1582–1587.

    Article  CAS  Google Scholar 

  25. Kim JH, Majumder N, Lin H, Watkins S, Falo Jr LD, You Z . Induction of therapeutic antitumor immunity by in vivo administration of a lentiviral vaccine. Hum Gene Ther 2005; 16: 1255–1266.

    Article  CAS  Google Scholar 

  26. Chapatte L, Colombetti S, Cerottini JC, Levy F . Efficient induction of tumor antigen-specific CD8+ memory T cells by recombinant lentivectors. Cancer Res 2006; 66: 1155–1160.

    Article  CAS  Google Scholar 

  27. Rowe HM, Lopes L, Ikeda Y, Bailey R, Barde I, Zenke M et al. Immunization with a lentiviral vector stimulates both CD4 and CD8 T cell responses to an ovalbumin transgene. Mol Ther 2006; 13: 310–319.

    Article  CAS  Google Scholar 

  28. He Y, Munn D, Falo Jr LD . Recombinant lentivector as a genetic immunization vehicle for antitumor immunity. Expert Rev Vaccines 2007; 6: 913–924.

    Article  CAS  Google Scholar 

  29. Metharom P, Ellem KA, Schmidt C, Wei MQ . Lentiviral vector-mediated tyrosinase-related protein 2 gene transfer to dendritic cells for the therapy of melanoma. Hum Gene Ther 2001; 12: 2203–2213.

    Article  CAS  Google Scholar 

  30. Lopes L, Dewannieux M, Gileadi U, Bailey R, Ikeda Y, Whittaker C et al. Immunization with a lentivector that targets tumor antigen expression to dendritic cells induces potent CD8+ and CD4+ T-cell responses. J Virol 2008; 82: 86–95.

    Article  CAS  Google Scholar 

  31. Rowe HM, Lopes L, Brown N, Efklidou S, Smallie T, Karrar S et al. Expression of vFLIP in a lentiviral vaccine vector activates NF-κB, matures dendritic cells, and increases CD8+ T-cell responses. J Virol 2009; 83: 1555–1562.

    Article  CAS  Google Scholar 

  32. He Y, Zhang J, Mi Z, Robbins P, Falo Jr LD . Immunization with lentiviral vector-transduced dendritic cells induces strong and long-lasting T cell responses and therapeutic immunity. J Immunol 2005; 174: 3808–3817.

    Article  CAS  Google Scholar 

  33. Esslinger C, Chapatte L, Finke D, Miconnet I, Guillaume P, Levy F et al. In vivo administration of a lentiviral vaccine targets DCs and induces efficient CD8(+) T cell responses. J Clin Invest 2003; 111: 1673–1681.

    Article  CAS  Google Scholar 

  34. Yang L, Yang H, Rideout K, Cho T, Joo KI, Ziegler L et al. Engineered lentivector targeting of dendritic cells for in vivo immunization. Nat Biotechnol 2008; 26: 326–334.

    Article  CAS  Google Scholar 

  35. Geijtenbeek TB, Torensma R, van Vliet SJ, van Duijnhoven GC, Adema GJ, van Kooyk Y et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell 2000; 100: 575–585.

    Article  CAS  Google Scholar 

  36. Gardner JP, Frolov I, Perri S, Ji Y, MacKichan ML, zur Megede J et al. Infection of human dendritic cells by a sindbis virus replicon vector is determined by a single amino acid substitution in the E2 glycoprotein. J Virol 2000; 74: 11849–11857.

    Article  CAS  Google Scholar 

  37. Mitchell DA, Fadden AJ, Drickamer K . A novel mechanism of carbohydrate recognition by the C-type lectins DC-SIGN and DC-SIGNR. Subunit organization and binding to multivalent ligands. J Biol Chem 2001; 276: 28939–28945.

    Article  CAS  Google Scholar 

  38. Overwijk WW, Tsung A, Irvine KR, Parkhurst MR, Goletz TJ, Tsung K et al. gp100/pmel 17 is a murine tumor rejection antigen: induction of ‘self’-reactive, tumoricidal T cells using high-affinity, altered peptide ligand. J Exp Med 1998; 188: 277–286.

    Article  CAS  Google Scholar 

  39. Zhai Y, Yang JC, Spiess P, Nishimura MI, Overwijk WW, Roberts B et al. Cloning and characterization of the genes encoding the murine homologues of the human melanoma antigens MART1 and gp100. J Immunother 1997; 20: 15–25.

    Article  CAS  Google Scholar 

  40. Xiang R, Lode HN, Chao TH, Ruehlmann JM, Dolman CS, Rodriguez F et al. An autologous oral DNA vaccine protects against murine melanoma. Proc Natl Acad Sci USA 2000; 97: 5492–5497.

    Article  CAS  Google Scholar 

  41. Zhou WZ, Hoon DS, Huang SK, Fujii S, Hashimoto K, Morishita R et al. RNA melanoma vaccine: induction of antitumor immunity by human glycoprotein 100 mRNA immunization. Hum Gene Ther 1999; 10: 2719–2724.

    Article  CAS  Google Scholar 

  42. Steitz J, Tormo D, Schweichel D, Tuting T . Comparison of recombinant adenovirus and synthetic peptide for DC-based melanoma vaccination. Cancer Gene Ther 2006; 13: 318–325.

    Article  CAS  Google Scholar 

  43. Lepage S, Lapointe R . Melanosomal targeting sequences from gp100 are essential for MHC class II-restricted endogenous epitope presentation and mobilization to endosomal compartments. Cancer Res 2006; 66: 2423–2432.

    Article  CAS  Google Scholar 

  44. Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D . Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 2002; 295: 868–872.

    Article  CAS  Google Scholar 

  45. Dull T, Zufferey R, Kelly M, Mandel RJ, Nguyen M, Trono D et al. A third-generation lentivirus vector with a conditional packaging system. J Virol 1998; 72: 8463–8471.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S et al. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992; 176: 1693–1702.

    Article  CAS  Google Scholar 

  47. Tacken PJ, de Vries IJ, Gijzen K, Joosten B, Wu D, Rother RP et al. Effective induction of naive and recall T-cell responses by targeting antigen to human dendritic cells via a humanized anti-DC-SIGN antibody. Blood 2005; 106: 1278–1285.

    Article  CAS  Google Scholar 

  48. Caminschi I, Corbett AJ, Zahra C, Lahoud M, Lucas KM, Sofi M et al. Functional comparison of mouse CIRE/mouse DC-SIGN and human DC-SIGN. Int Immunol 2006; 18: 741–753.

    Article  CAS  Google Scholar 

  49. Overwijk WW, Theoret MR, Finkelstein SE, Surman DR, de Jong LA, Vyth-Dreese FA et al. Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 2003; 198: 569–580.

    Article  CAS  Google Scholar 

  50. Eggert AA, Schreurs MW, Boerman OC, Oyen WJ, de Boer AJ, Punt CJ et al. Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 1999; 59: 3340–3345.

    CAS  PubMed  Google Scholar 

  51. Okada N, Tsujino M, Hagiwara Y, Tada A, Tamura Y, Mori K et al. Administration route-dependent vaccine efficiency of murine dendritic cells pulsed with antigens. Br J Cancer 2001; 84: 1564–1570.

    Article  CAS  Google Scholar 

  52. Dai B, Yang L, Yang H, Hu B, Baltimore D, Wang P . HIV-1 gag-specific immunity induced by a lentivector-based vaccine directed to dendritic cells. Proc Natl Acad Sci USA 2009; 106: 20382–20387.

    Article  CAS  Google Scholar 

  53. Collins MK, Cerundolo V . Gene therapy meets vaccine development. Trends Biotechnol 2004; 22: 623–626.

    Article  CAS  Google Scholar 

  54. Strauss JH, Wang KS, Schmaljohn AL, Kuhn RJ, Strauss EG . Host-cell receptors for Sindbis virus. Arch Virol Suppl 1994; 9: 473–484.

    CAS  PubMed  Google Scholar 

  55. Byrnes AP, Griffin DE . Binding of Sindbis virus to cell surface heparan sulfate. J Virol 1998; 72: 7349–7356.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. He Y, Zhang J, Donahue C, Falo Jr LD . Skin-derived dendritic cells induce potent CD8(+) T cell immunity in recombinant lentivector-mediated genetic immunization. Immunity 2006; 24: 643–656.

    Article  CAS  Google Scholar 

  57. Ma A, Koka R, Burkett P . Diverse functions of IL-2, IL-15, and IL-7 in lymphoid homeostasis. Annu Rev Immunol 2006; 24: 657–679.

    Article  CAS  Google Scholar 

  58. Park D, Lapteva N, Seethammagari M, Slawin KM, Spencer DM . An essential role for Akt1 in dendritic cell function and tumor immunotherapy. Nat Biotechnol 2006; 24: 1581–1590.

    Article  CAS  Google Scholar 

  59. Keller AM, Schildknecht A, Xiao Y, van den Broek M, Borst J . Expression of costimulatory ligand CD70 on steady-state dendritic cells breaks CD8+ T cell tolerance and permits effective immunity. Immunity 2008; 29: 934–946.

    Article  CAS  Google Scholar 

  60. Stonier SW, Ma LJ, Castillo EF, Schluns KS . Dendritic cells drive memory CD8 T-cell homeostasis via IL-15 transpresentation. Blood 2008; 112: 4546–4554.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Steven Froelich and April Tai for critical reading of the manuscript. This work was supported by a National Institute of Health grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Wang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, H., Hu, B., Xiao, L. et al. Dendritic cell-directed lentivector vaccine induces antigen-specific immune responses against murine melanoma. Cancer Gene Ther 18, 370–380 (2011). https://doi.org/10.1038/cgt.2011.13

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.13

Keywords

This article is cited by

Search

Quick links