Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Gene therapy with interleukin-10 receptor and interleukin-12 induces a protective interferon-γ-dependent response against B16F10-Nex2 melanoma

Abstract

Antitumor immune responses are associated with proinflammatory cytokines, whereas tumor-developing animals generally have increased the production of immunosuppressive cytokines. Here, we show that splenocytes from C57Bl/6 mice resistant to low doses of B16F10-Nex2 melanoma cells produced twofold or higher interferon-γ (IFN-γ)/interleukin-10 (IL-10) ratios, whereas cells from tumor-bearing animals produced predominantly IL-10. IL-10-knockout (IL-10KO) mice were significantly more resistant to B16F10-Nex2 development, producing increased amounts of IL-12 and IFN-γ. To neutralize IL-10 in vivo, aiming at cancer therapy, recombinant eukaryotic plasmid expressing the soluble extracellular region of the murine IL-10 receptor α-chain was constructed (pcDNA3-sIL-10R). Plasmid-treated melanoma-challenged animals showed extended survival time, the protective response was IFN-γ dependent and enhanced by co-immunization with a plasmid expressing IL-12. Dendritic cells (DCs) from IL-10KO mice, primed with B16F10-Nex2 antigens (TAg), secreted increased amounts of T-helper 1-type cytokines and increased the expression of surface activation markers. Vaccination of C57Bl/6 mice with TAg-activated IL-10KO DCs, as well as with TAg-primed DCs from C57Bl/6 mice transfected with pcDNA3-sIL10R plasmid, significantly increased animal survival. In conclusion, an IFN-γ-dependent protective response was induced against B16F10-Nex2 cells by neutralization of IL-10 with pcDNA3-sIL10R plasmid. This effect was enhanced by association with IL-12 gene therapy (80% protection), and could be mediated by TAg-primed DCs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Maeda H, Shiraishi A . TGF-beta contributes to the shift toward Th2-type responses through direct and IL-10-mediated pathways in tumor-bearing mice. J Immunol 1996; 156: 73–78.

    CAS  PubMed  Google Scholar 

  2. Pellegrini P, Berghella AM, Del Beato T, Cicia S, Adorno D, Casciani CU . Disregulation in TH1 and TH2 subsets of CD4+ T cells in peripheral blood of colorectal cancer patients and involvement in cancer establishment and progression. Cancer Immunol Immunother 1996; 42: 1–8.

    Article  CAS  Google Scholar 

  3. Tabata T, Hazama S, Yoshino S, Oka M . Th2 subset dominance among peripheral blood T lymphocytes in patients with digestive cancers. Am J Surg 1999; 177: 203–208.

    Article  CAS  Google Scholar 

  4. Lauerova L, Dusek L, Simickova M, Kocák I, Vagundová M, Zaloudík J et al. Malignant melanoma associates with Th1/Th2 imbalance that coincides with disease progression and immunotherapy response. Neoplasma 2002; 49: 159–166.

    CAS  PubMed  Google Scholar 

  5. Dunn GP, Old LJ, Schreiber RD . The immunobiology of cancer immunosurveillance and immunoediting. Immunity 2004; 21: 137–148.

    Article  CAS  Google Scholar 

  6. Gao Y, Yang W, Pan M, Scully E, Girardi M, Augenlicht LH et al. Gamma delta T cells provide an early source of interferon-gamma in tumor immunity. J Exp Med 2003; 198: 433–442.

    Article  CAS  Google Scholar 

  7. Bach EA, Aguet M, Schreiber RD . The IFN-gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 1997; 15: 563–591.

    Article  CAS  Google Scholar 

  8. Rodrigues EG, Garofalo AS, Travassos LR . Endogenous accumulation of IFN-gamma in IFN-gamma-R (−/−) mice increases resistance to B16F10-Nex2 murine melanoma: a model for direct IFN-gamma antitumor cytotoxicity in vitro and in vivo. Cytokines Cell Mol Ther 2002; 7: 107–116.

    Article  CAS  Google Scholar 

  9. Critchley-Thorne RJ, Yan N, Nacu S, Weber J, Holmes SP, Lee PP . Down-regulation of the interferon signaling pathway in T lymphocytes from patients with metastatic melanoma. PLoS Med 2007; 4: e176.

    Article  Google Scholar 

  10. Critchley-Thorne RJ, Simons DL, Yan N, Miyahira AK, Dirbas FM, Johnson DL et al. Impaired interferon signaling is a common immune defect in human cancer. Proc Natl Acad Sci USA 2009; 106: 9005–9010.

    Article  Google Scholar 

  11. Yu P, Fu Y-X . Tumor-infiltrating T lymphocytes: friends of foes? Lab Invest 2006; 86: 231–245.

    Article  CAS  Google Scholar 

  12. Jarnicki AG, Lysaght J, Todryk S, Mills KHG . Suppression of antitumor immunity by IL-10 and TGF-beta-producing T cells infiltrating the growing tumor: influence of tumor environment on the induction of CD4+ and CD8+ regulatory T cells. J Immunol 2006; 177: 896–904.

    Article  CAS  Google Scholar 

  13. Nevala WK, Vachon CM, Leontovich AA, Scott CG, Thompson MA, Markovic SN . Evidence of systemic TH2-driven chronic inflammation in patients with metastatic melanoma. Clin Cancer Res 2009; 15: 1931–1939.

    Article  CAS  Google Scholar 

  14. Viguier M, Lemaitre F, Verola O, Cho M, Gorochov G, Dubertret L et al. Tumor-induced suppression of interferon-gamma production and enhancement of interleukin-10 production by natural killer (NK) cells: paralleled to CD4(+) T cells. J Immunol 2004; 173: 1444–1453.

    Article  CAS  Google Scholar 

  15. Wei H, Zheng X, Lou D, Zhang L, Zhang R, Sun R et al. Tumor-induced suppression of interferon-gamma production and enhancement of interleukin-10 production by natural killer (NK) cells: paralleled to CD4(+) T cells. Mol Immunol 2005; 42: 1023–1031.

    Article  CAS  Google Scholar 

  16. O'Garra A, Barrat FJ, Castro AG, Vicari A, Hawrylowicz C . Strategies for use of IL-10 or its antagonists in human disease. Immunol Rev 2008; 223: 114–131.

    Article  CAS  Google Scholar 

  17. Kühn R, Löhler J, Rennick D, Rajewsky K, Müller W . Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263–274.

    Article  Google Scholar 

  18. Fidler IJ . Biological behavior of malignant melanoma cells correlated to their survival in vivo. Cancer Res 1975; 35: 218–224.

    CAS  PubMed  Google Scholar 

  19. Freitas ZF, Rodrigues EG, Oliveira V, Carmona AK, Travassos LR . Melanoma heterogeneity: differential, invasive, metastatic properties and profiles of cathepsin B, D and L activities in subclones of the B16F10-NEX2 cell line. Melanoma Res 2004; 14: 333–344.

    Article  CAS  Google Scholar 

  20. Ho AS, Liu Y, Khan TA, Hsu DH, Bazan JF, Moore KW . A receptor for interleukin 10 is related to interferon receptors. Proc Natl Acad Sci USA 1993; 90: 11267–11271.

    Article  CAS  Google Scholar 

  21. Inaba K, Swiggard WJ, Steinman RM, Romani N, Schuler G . Isolation of dendritic cells. Curr Protoc Immunol 2001 (Chapter 3, Unit 3.7).

  22. Zamboni DS, Rabinovitch M . Nitric oxide partially controls Coxiella burnetii phase II infection in mouse primary macrophages. Infect Immun 2003; 71: 1225–1233.

    Article  CAS  Google Scholar 

  23. Rakhmilevich AL, Turner J, Ford MJ, McCabe D, Sun WH, Sondel PM et al. Gene gun-mediated skin transfection with interleukin 12 gene results in regression of established primary and metastatic murine tumors. Proc Natl Acad Sci USA 1996; 93: 6291–6296.

    Article  CAS  Google Scholar 

  24. Hebeler-Barbosa F, Rodrigues EG, Puccia R, Caires AC, Travassos LR . Gene therapy against murine melanoma B16F10-Nex2 using IL-13Ralpha2-Fc chimera and interleukin 12 in association with a cyclopalladated drug. Transl Oncol 2008; 1: 110–120.

    Article  Google Scholar 

  25. Murray HW, Lu CM, Mauze S, Freeman S, Moreira AL, Kaplan G et al. Interleukin-10 (IL-10) in experimental visceral leishmaniasis and IL-10 receptor blockade as immunotherapy. Infect Immun 2002; 70: 6284–6293.

    Article  CAS  Google Scholar 

  26. Belkaid Y, Hoffmann KF, Mendez S, Kamhawi S, Udey MC, Wynn TA et al. The role of interleukin (IL)-10 in the persistence of Leishmania major in the skin after healing and the therapeutic potential of anti-IL-10 receptor antibody for sterile cure. J Exp Med 2001; 194: 1497–1506.

    Article  CAS  Google Scholar 

  27. Rigopoulou EI, Abbott WG, Haigh P, Naoumov NV . Blocking of interleukin-10 receptor-a novel approach to stimulate T-helper cell type 1 responses to hepatitis C virus. Clin Immunol 2005; 117: 57–64.

    Article  CAS  Google Scholar 

  28. Tan JC, Braun S, Rong H, DiGiacomo R, Dolphin E, Baldwin S et al. Characterization of recombinant extracellular domain of human interleukin-10 receptor. J Biol Chem 1995; 270: 12906–12911.

    Article  CAS  Google Scholar 

  29. Barnetson RS, Halliday GM . Regression in skin tumours: a common phenomenon. Australas J Dermatol 1997; 38 (Suppl 1): S63–S65.

    Article  Google Scholar 

  30. Gromet MA, Epstein WL, Blois MS . The regressing thin malignant melanoma: a distinctive lesion with metastatic potential. Cancer 1978; 42: 2282–2292.

    Article  CAS  Google Scholar 

  31. Panagopoulos E, Murray D . Metastatic malignant melanoma of unknown primary origin: a study of 30 cases. J Surg Oncol 1983; 23: 8–10.

    Article  CAS  Google Scholar 

  32. Kaplan DH, Shankaran V, Dighe AS, Stockert E, Aguet M, Old LJ et al. Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. Proc Natl Acad Sci USA 1998; 95: 7556–7561.

    Article  CAS  Google Scholar 

  33. Picaud S, Bardot B, De Maeyer E, Seif I . Enhanced tumor development in mice lacking a functional type I interferon receptor. J Interferon Cytokine Res 2002; 22: 457–462.

    Article  CAS  Google Scholar 

  34. Shankaran V, Ikeda H, Bruce AT, White JM, Swanson PE, Old LJ et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature 2001; 410: 1107–1111.

    Article  CAS  Google Scholar 

  35. Finn OJ . Cancer vaccines: between the idea and the reality. Nat Rev Immunol 2003; 3: 630–641.

    Article  CAS  Google Scholar 

  36. Zou W . Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5: 263–274.

    Article  CAS  Google Scholar 

  37. Tatsumi T, Kierstead LS, Ranieri E, Gesualdo L, Schena FP, Finke JH et al. Disease-associated bias in T helper type 1 (Th1)/Th2 CD4(+) T cell responses against MAGE-6 in HLA-DRB10401(+) patients with renal cell carcinoma or melanoma. J Exp Med 2002; 196: 619–628.

    Article  CAS  Google Scholar 

  38. Pure E, Allison JP, Schreiber RD . Breaking down the barriers to cancer immunotherapy. Nat Immunol 2005; 6: 1207–1210.

    Article  CAS  Google Scholar 

  39. Terabe M, Matsui S, Noben-Trauth N, Chen H, Watson C, Donaldson DD et al. NKT cell-mediated repression of tumour immunosurveillance by IL-13 and the IL-4R-STAT6 pathway. Nat Immunol 2000; 1: 515–520.

    Article  CAS  Google Scholar 

  40. Terabe M, Matsui S, Park J-M, Mamura M, Noben-Trauth N, Donaldson DD et al. TGF-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block CTL-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 2003; 198: 1741–1752.

    Article  CAS  Google Scholar 

  41. Park JM, Terabe M, Donaldson DD, Forni G, Berzofsky JA . Natural immunosurveillance against spontaneous, autochthonous breast cancers revealed and enhanced by blockade of IL-13-mediated negative regulation. Cancer Immunol Immunother 2008; 57: 907–912.

    Article  CAS  Google Scholar 

  42. Arteaga CL, Hurd SD, Winnier AR, Johnson MD, Fendly BM, Forbes JT . Anti-transforming growth factor (TGF)-beta antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-beta interactions in human breast cancer progression. J Clin Invest 1993; 92: 2569–2576.

    Article  CAS  Google Scholar 

  43. Fakhrai H, Dorigo O, Shawler DL, Lin H, Mercola D, Black KL et al. Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc Natl Acad Sci USA 1996; 93: 2909–2914.

    Article  CAS  Google Scholar 

  44. Won J, Kim H, Park EJ, Hong Y, Kim SJ, Yun Y . Tumorigenicity of mouse thymoma is suppressed by soluble type II transforming growth factor beta receptor therapy. Cancer Res 1999; 59: 1273–1277.

    CAS  PubMed  Google Scholar 

  45. Kontani K, Kajino K, Huangi C-L, Fujino S, Taguchi O, Yamauchi A et al. Spontaneous elicitation of potent antitumor immunity and eradication of established tumors by administration of DNA encoding soluble transforming growth factor-β II receptor without active antigen-sensitization. Cancer Immunol Immunother 2006; 55: 579–587.

    Article  Google Scholar 

  46. Vicari AP, Chiodoni C, Vaure C, Aït-Yahia S, Dercamp C, Matsos F et al. Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med 2002; 196: 541–549.

    Article  CAS  Google Scholar 

  47. Rincón M, Anguita J, Nakamura T, Fikrig E, Flavell RA . Interleukin (IL)-6 directs the differentiation of IL-4-producing CD4+ T cells. J Exp Med 1997; 185: 461–469.

    Article  Google Scholar 

  48. Dodge IL, Carr MW, Cernadas M, Brenner MB . IL-6 production by pulmonary dendritic cells impedes Th1 immune responses. J Immunol 2003; 170: 4457–4464.

    Article  CAS  Google Scholar 

  49. Nevala WK, Vachon CM, Leontovich AA, Scott CG, Thompson MA, Markovic SN, Melanoma Study Group of the Mayo Clinic Cancer Center. Evidence of systemic Th2-driven chronic inflammation in patients with metastatic melanoma. Clin Cancer Res 2009; 15: 1931–1939.

    Article  CAS  Google Scholar 

  50. Logsdon NJ, Jones BC, Josephson K, Cook J, Walter MR . Comparison of interleukin-22 and interleukin-10 soluble receptor complexes. J Interferon Cytokine Res 2002; 22: 1099–1112.

    Article  CAS  Google Scholar 

  51. Pedersen AE, Thorn M, Gad M, Walter MR, Johnsen HE, Gaarsdal E et al. Phenotypic and functional characterization of clinical grade dendritic cells generated from patients with advanced breast cancer for therapeutic vaccination. Scand J Immunol 2005; 61: 147–156.

    Article  CAS  Google Scholar 

  52. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A . Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765.

    Article  CAS  Google Scholar 

  53. Kobayashi M, Kobayashi H, Pollard RB, Suzuki F . A pathogenic role of Th2 cells and their cytokine products on the pulmonary metastasis of murine B16 melanoma. J Immunol 1998; 160: 5869–5873.

    CAS  PubMed  Google Scholar 

  54. Terai M, Tamura Y, Alexeev V, Ohtsuka E, Berd D, Mastrangelo MJ et al. Human interleukin 10 receptor 1/IgG1-Fc fusion proteins: immunoadhesins for human IL-10 with therapeutic potential. Cancer Immunol Immunother 2009; 58: 1307–1317.

    Article  CAS  Google Scholar 

  55. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  Google Scholar 

  56. Reid DC . Dendritic cells and immunotherapy for malignant disease. Br J Haematol 2001; 112: 874–887.

    Article  CAS  Google Scholar 

  57. Schuler G, Schuler-Thurner B, Steinman RM . The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol 2003; 15: 138–147.

    Article  CAS  Google Scholar 

  58. Melief CJ . Cancer immunotherapy by dendritic cells. Immunity 2008; 29: 372–383.

    Article  CAS  Google Scholar 

  59. Igietseme JU, Ananaba GA, Bolier J, Bowers S, Moore T, Belay T et al. Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for specific Th1 induction: potential for cellular vaccine development. J Immunol 2000; 164: 4212–4219.

    Article  CAS  Google Scholar 

  60. He Q, Moore TT, Eko FO, Lyn D, Ananaba GA, Martin A et al. Molecular basis for the potency of IL-10-deficient dendritic cells as a highly efficient APC system for activating Th1 response. J Immunol 2005; 174: 4860–4869.

    Article  CAS  Google Scholar 

  61. Chen YX, Man K, Ling GS, Chen Y, Sun BS, Cheng Q et al. A crucial role for dendritic cell (DC) IL-10 in inhibiting successful DC-based immunotherapy: superior antitumor immunity against hepatocellular carcinoma evoked by DC devoid of IL-10. J Immunol 2007; 179: 6009–6015.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant 06/50634-2 from the Fundação de Amparo à Pesquisa do Estado de São Paulo, FAPESP. LHLM was a post-graduate fellow of the Brazilian National Research Council (CNPq). TP is a Post-Doctorate fellow of FAPESP and EGR and LRT are career researchers of CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E G Rodrigues.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marchi, L., Paschoalin, T., Travassos, L. et al. Gene therapy with interleukin-10 receptor and interleukin-12 induces a protective interferon-γ-dependent response against B16F10-Nex2 melanoma. Cancer Gene Ther 18, 110–122 (2011). https://doi.org/10.1038/cgt.2010.58

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2010.58

Keywords

This article is cited by

Search

Quick links