Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Inhibition and promotion of tumor growth with adeno-associated virus carcinoembryonic antigen vaccine and Toll-like receptor agonists

Abstract

Carcinoembryonic antigen (CEA) is a cancer vaccines’ target. Several features of recombinant adeno-associated virus (rAAV) are attractive for vaccine applications. Combining other viral vector vaccines with Toll-like receptor (TLR) agonists enhances antitumor immunity. Wild-type and CEA transgenic (Tg) mice were immunized with rAAV-expressing CEA, the TLR9 agonist, oligodinucleotide (ODN)1826 and the TLR7 agonist, imiquimod. Mice were challenged with MC38 colon tumor cells and MC38 cells expressing CEA. rAAV-CEA immunization combined with ODN1826 or imiquimod enhanced CEA-specific T-helper 1 immunity and protected against tumor challenge in wild-type but not in CEA-Tg mice. In contrast, immunization with rAAV-CEA in CEA-Tg mice could abrogate the antitumor effects of ODN1826 and promote tumor growth. Compared to wild-type, CEA-Tg mice were characterized by a greater myeloid suppressor cell and T-helper 2 response to TLR agonists and to syngeneic tumors. Depleting PDCA1+ plasmacytoid dendritic cells and Gr1+ myeloid cells increased anti-CEA immune responses in CEA-Tg mice to rAAV-CEA-ODN1826 immunization, whereas depleting CD25+ T cells did not. There are differences in the response of wild-type and CEA-Tg mice to rAAV-CEA, TLR agonists and syngeneic tumor. In CEA-Tg mice, tumor growth can be promoted with rAAV-CEA and TLR agonists. Dendritic and myeloid cells play a regulatory role.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Ponnazhagan S . Adenoassociated virus vectors for genetic immunization. Immunol Res 2002; 26: 247–253.

    Article  CAS  Google Scholar 

  2. Chirmule N, Xiao W, Truneh A, Schnell MA, Hughes JV, Zoltick P et al. Humoral immunity to adeno-associated virus type 2 vectors following administration to murine and nonhuman primate muscle. J Virol 2000; 74: 2420–2425.

    Article  CAS  Google Scholar 

  3. Wang L, Cao O, Swalm B, Dobrzynski E, Mingozzi F, Herzog RW . Major role of local immune responses in antibody formation to factor IX in AAV gene transfer. Gene Therapy 2005; 12: 1453–1464.

    Article  CAS  Google Scholar 

  4. Zhang TP, Jin DY, Wardrop III RM, Gui T, Maile R, Frelinger JA et al. Transgene expression levels and kinetics determine risk of humoral immune response modeled in factor IX knockout and missense mutant mice. Gene Therapy 2007; 14: 429–440.

    Article  CAS  Google Scholar 

  5. Ponnazhagan S, Mahendra G, Lima J, Aldrich WA, Jenkins CB, Ren C et al. Augmentation of antitumor activity of a recombinant adeno-associated virus carcinoembryonic antigen vaccine with plasmid adjuvant. Hum Gene Ther 2004; 15: 856–864.

    Article  CAS  Google Scholar 

  6. Scheerlinck JY . Genetic adjuvants for DNA vaccines. Vaccine 2001; 19: 2647–2656.

    Article  CAS  Google Scholar 

  7. Triozzi PL, Aldrich W, Ponnazhagan S . Regulation of the activity of an adeno-associated virus vector cancer vaccine administered with synthetic Toll-like receptor agonists. Vaccine 2010; 28: 7837–7843.

    Article  CAS  Google Scholar 

  8. Hodge JW, Grosenbach DW, Aarts WM, Poole DJ, Schlom J . Vaccine therapy of established tumors in the absence of autoimmunity. Clin Cancer Res 2003; 9: 1837–1849.

    CAS  PubMed  Google Scholar 

  9. Mizobata S, Tompkins K, Simpson JF, Shyr Y, Primus FJ . Induction of cytotoxic T cells and their antitumor activity in mice transgenic for carcinoembryonic antigen. Cancer Immunol Immunother 2000; 49: 285–295.

    Article  CAS  Google Scholar 

  10. Zhou H, Luo Y, Mizutani M, Mizutani N, Becker JC, Primus FJ et al. A novel transgenic mouse model for immunological evaluation of carcinoembryonic antigen-based DNA minigene vaccines. J Clin Invest 2004; 113: 1792–1798.

    Article  CAS  Google Scholar 

  11. Ojima T, Iwahashi M, Nakamura M, Matsuda K, Nakamori M, Ueda K et al. Successful cancer vaccine therapy for carcinoembryonic antigen (CEA)-expressing colon cancer using genetically modified dendritic cells that express CEA and T helper-type 1 cytokines in CEA transgenic mice. Int J Cancer 2007; 120: 585–593.

    Article  CAS  Google Scholar 

  12. Salucci V, Mennuni C, Calvaruso F, Cerino R, Neuner P, Ciliberto G et al. CD8+ T-cell tolerance can be broken by an adenoviral vaccine while CD4+ T-cell tolerance is broken by additional co-administration of a Toll-like receptor ligand. Scand J Immunol 2006; 63: 35–41.

    Article  CAS  Google Scholar 

  13. Saha A, Bhattacharya-Chatterjee M, Foon KA, Celis E, Chatterjee SK . Stimulatory effects of CpG oligodeoxynucleotide on dendritic cell-based immunotherapy of colon cancer in CEA/HLA-A2 transgenic mice. Int J Cancer 2009; 124: 877–888.

    Article  CAS  Google Scholar 

  14. Saha A, Baral RN, Chatterjee SK, Mohanty K, Pal S, Foon KA et al. CpG oligonucleotides enhance the tumor antigen-specific immune response of an anti-idiotype antibody-based vaccine strategy in CEA transgenic mice. Cancer Immunol Immunother 2006; 55: 515–527.

    Article  Google Scholar 

  15. Clarke P, Mann J, Simpson JF, Rickard-Dickson K, Primus FJ . Mice transgenic for human carcinoembryonic antigen as a model for immunotherapy. Cancer Res 1998; 58: 1469–1477.

    CAS  PubMed  Google Scholar 

  16. Serafini P, Meckel K, Kelso M, Noonan K, Califano J, Koch W et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med 2006; 203: 2691–2702.

    Article  CAS  Google Scholar 

  17. Blasius AL, Giurisato E, Cella M, Schreiber RD, Shaw AS, Colonna M . Bone marrow stromal cell antigen 2 is a specific marker of type I IFN-producing cells in the naive mouse, but a promiscuous cell surface antigen following IFN stimulation. J Immunol 2006; 177: 3260–3265.

    Article  CAS  Google Scholar 

  18. Facciabene A, Aurisicchio L, Elia L, Palombo F, Mennuni C, Ciliberto G et al. DNA and adenoviral vectors encoding carcinoembryonic antigen fused to immunoenhancing sequences augment antigen-specific immune response and confer tumor protection. Hum Gene Ther 2006; 17: 81–92.

    Article  CAS  Google Scholar 

  19. Sharma S, Karakousis CP, Takita H, Shin K, Brooks SP . Cytokines and chemokines are expressed at different levels in small and large murine colon-26 tumors following intratumoral injections of CpG ODN. Neoplasia 2004; 6: 523–528.

    Article  CAS  Google Scholar 

  20. Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K et al. Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol 2008; 83: 1136–1144.

    Article  CAS  Google Scholar 

  21. Bronte V, Zanovello P . Regulation of immune responses by L-arginine metabolism. Nat Rev Immunol 2005; 5: 641–654.

    Article  CAS  Google Scholar 

  22. Fontenot JD, Rudensky AY . A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat Immunol 2005; 6: 331–337.

    Article  CAS  Google Scholar 

  23. Kline J, Brown IE, Zha YY, Blank C, Strickler J, Wouters H et al. Homeostatic proliferation plus regulatory T-cell depletion promotes potent rejection of B16 melanoma. Clin Cancer Res 2008; 14: 3156–3167.

    Article  CAS  Google Scholar 

  24. Kurts CJ, Miller FAP, Subramaniam RM, Carbone FR, Heath WR . Major histocompatibility complex class I-restricted cross presentation is biased toward high-dose antigens and those released during cellular destruction. J Exp Med 1998; 188: 409–414.

    Article  CAS  Google Scholar 

  25. Nelson D, Bundell C, Robinson B . In vivo cross-presentation of a soluble protein antigen: kinetics, distribution, and generation of effector CTL recognizing dominant and subdominant epitopes. J Immunol 2000; 165: 6123–6132.

    Article  CAS  Google Scholar 

  26. Dharmapuri S, Aurisicchio L, Neuner P, Verdirame M, Ciliberto G, La Monica N . An oral TLR7 agonist is a potent adjuvant of DNA vaccination in transgenic mouse tumor models. Cancer Gene Ther 2009; 16: 462–472.

    Article  CAS  Google Scholar 

  27. Ullenhag GJ, Frödin JE, Jeddi-Tehrani M, Strigård K, Eriksson E, Samanci A et al. Durable carcinoembryonic antigen (CEA)-specific humoral and cellular immune responses in colorectal carcinoma patients vaccinated with recombinant CEA and granulocyte/macrophage colony-stimulating factor. Clin Cancer Res 2004; 10: 3273–3281.

    Article  CAS  Google Scholar 

  28. Ge Y, Powell S, Van Roey M, McArthur JG . Factors influencing the development of an anti-factor IX (FIX) immune response following administration of adeno-associated virus-FIX. Blood 2001; 97: 3733–3737.

    Article  CAS  Google Scholar 

  29. Kelly ME, Zhuo J, Bharadwaj AS, Chao H . Induction of immune tolerance to FIX following muscular AAV gene transfer is AAV-dose/FIX-level dependent. Mol Ther 2009; 17: 857–863.

    Article  CAS  Google Scholar 

  30. Ehlers M, Ravetch JV . Opposing effects of Toll-like receptor stimulation induce autoimmunity or tolerance. Trends Immunol 2007; 28: 74–79.

    Article  CAS  Google Scholar 

  31. Lenert P, Brummel R, Field EH, Ashman RF . TLR-9 activation of marginal zone B cells in lupus mice regulates immunity through increased IL-10 production. J Clin Immunol 2005; 25: 29–40.

    Article  CAS  Google Scholar 

  32. Mellor AL, Baban B, Chandler PR, Manlapat A, Kahler DJ, Munn DH . Cutting edge: CpG oligonucleotides induce splenic CD19+ dendritic cells to acquire potent indoleamine 2,3-dioxygenase-dependent T cell regulatory functions via IFN Type 1 signaling. J Immunol 2005; 175: 5601–5605.

    Article  CAS  Google Scholar 

  33. Morecki S, Gelfand Y, Yacovlev E, Eizik O, Shabat Y, Slavin S . CpG-induced myeloid CD11b+Gr-1+ cells efficiently suppress T cell-mediated immunoreactivity and graft-versus-host disease in a murine model of allogeneic cell therapy. Biol Blood Marrow Transplant 2008; 14: 973–984.

    Article  CAS  Google Scholar 

  34. Forward NA, Furlong SJ, Yang Y, Lin TJ, Hoskin DW . Signaling through TLR7 enhances the immunosuppressive activity of murine CD4+CD25+ T regulatory cells. J Leukoc Biol 2010; 87: 117–125.

    Article  CAS  Google Scholar 

  35. Bos R, van Duikeren S, Morreau H, Franken K, Schumacher TN, Haanen JB et al. Balancing between antitumor efficacy and autoimmune pathology in T-cell-mediated targeting of carcinoembryonic antigen. Cancer Res 2008; 68: 8446–8455.

    Article  CAS  Google Scholar 

  36. Elia L, Aurisicchio L, Facciabene A, Giannetti P, Ciliberto G, La Monica N et al. CD4+CD25+ regulatory T-cell-inactivation in combination with adenovirus vaccines enhances T-cell responses and protects mice from tumor challenge. Cancer Gene Ther 2007; 14: 201–210.

    Article  CAS  Google Scholar 

  37. Dietrich A, Stockmar C, Aust G, Endesfelder S, Guetz A, Sack U et al. Intraoperative subcutaneous or intrasplenic vaccination with modified autologous tumor cells leads to enhanced survival in a mouse tumor model. J Cancer Res Clin Oncol 2006; 132: 379–388.

    Article  CAS  Google Scholar 

  38. Nagaraj S, Youn JI, Weber H, Iclozan C, Lu L, Cotter MJ et al. Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clin Cancer Res 2010; 16: 1812–1823.

    Article  CAS  Google Scholar 

  39. Terabe M, Matsui S, Park JM, Mamura M, Noben-Trauth N, Donaldson DD et al. Transforming growth factor-beta production and myeloid cells are an effector mechanism through which CD1d-restricted T cells block cytotoxic T lymphocyte-mediated tumor immunosurveillance: abrogation prevents tumor recurrence. J Exp Med 2003; 198: 1741–1752.

    Article  CAS  Google Scholar 

  40. Nausch N, Galani IE, Schlecker E, Cerwenka A . Mononuclear myeloid-derived ‘suppressor’ cells express RAE-1 and activate natural killer cells. Blood 2008; 112: 4080–4089.

    Article  CAS  Google Scholar 

  41. Bergami-Santos PC, Mariano M, Barbuto JA . Dual role of polymorphonuclear neutrophils on the growth of Ehrlich ascites tumor (EAT) in mice. Life Sci 2004; 75: 245–255.

    Article  CAS  Google Scholar 

  42. Vicari AP, Chiodoni C, Vaure C, Aït-Yahia S, Dercamp C, Matsos F et al. Reversal of tumor-induced dendritic cell paralysis by CpG immunostimulatory oligonucleotide and anti-interleukin 10 receptor antibody. J Exp Med 2002; 196: 541–549.

    Article  CAS  Google Scholar 

  43. Melencio L, McKallip RJ, Guan H, Ramakrishnan R, Jain R, Nagarkatti PS et al. Role of CD4(+)CD25(+) T regulatory cells in IL-2-induced vascular leak. Int Immunol 2006; 18: 1461–1471.

    Article  CAS  Google Scholar 

  44. Thompson JA, Grunert F, Zimmermann W . Carcinoembryonic antigen gene family: molecular biology and clinical perspectives. J Clin Lab Anal 1991; 5: 344–366.

    Article  CAS  Google Scholar 

  45. Stern N, Markel G, Arnon TI, Gruda R, Wong H, Gray-Owen SD et al. Carcinoembryonic antigen (CEA) inhibits NK killing via interaction with CEA-related cell adhesion molecule 1. J Immunol 2005; 174: 6692–6701.

    Article  CAS  Google Scholar 

  46. Chen CJ, Shively JE . The cell-cell adhesion molecule carcinoembryonic antigen-related cellular adhesion molecule 1 inhibits IL-2 production and proliferation in human T cells by association with Src homology protein-1 and down-regulates IL-2 receptor. J Immunol 2004; 172: 3544–3552.

    Article  CAS  Google Scholar 

  47. Nonaka M, Ma BY, Murai R, Nakamura N, Baba M, Kawasaki N et al. Glycosylation-dependent interactions of C-type lectin DC-SIGN with colorectal tumor-associated Lewis glycans impair the function and differentiation of monocyte-derived dendritic cells. J Immunol 2008; 180: 3347–3356.

    Article  CAS  Google Scholar 

  48. Tassi E, Gavazzi F, Albarello L, Senyukov V, Longhi R, Dellabona P et al. Carcinoembryonic antigen-specific but not antiviral CD4+ T cell immunity is impaired in pancreatic carcinoma patients. J Immunol 2008; 181: 6595–6603.

    Article  CAS  Google Scholar 

  49. Berinstein NL . Carcinoembryonic antigen as a target for therapeutic anticancer vaccines: a review. J Clin Oncol 2002; 20: 2197–2207.

    Article  CAS  Google Scholar 

  50. Murad YM, Clay TM . CpG oligodeoxynucleotides as TLR9 agonists: therapeutic applications in cancer. BioDrugs 2009; 23: 361–375.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health Grants R01CA118660 and R01CA132077.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P L Triozzi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Triozzi, P., Aldrich, W. & Ponnazhagan, S. Inhibition and promotion of tumor growth with adeno-associated virus carcinoembryonic antigen vaccine and Toll-like receptor agonists. Cancer Gene Ther 18, 850–858 (2011). https://doi.org/10.1038/cgt.2011.54

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2011.54

Keywords

This article is cited by

Search

Quick links