Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Vaccination of fiber-modified adenovirus-transfected dendritic cells to express HER-2/neu stimulates efficient HER-2/neu-specific humoral and CTL responses and reduces breast carcinogenesis in transgenic mice

Abstract

HER-2/neu transgene-modified dendritic cell (DC)-based vaccines are potent at eliciting HER-2/neu-specific antitumor immunity. In this study, we constructed a recombinant adenovirus RGDAdVneu with fiber gene modified by RGD insertion into the viral knob's H1 loop. We transfected DCs with RGDAdVneu, and assessed/compared HER-2/neu-specific humoral and cytotoxic T lymphocyte (CTL) responses and antitumor immunity derived from the original AdVneu-transfected DCs (DCneu1) and RGDAdVneu-transfected DCs (DCneu2). We demonstrated that DCneu2 displayed increased HER-2/neu expression by 8.3-fold compared to DCneu1. We also demonstrated that DCneu2 vaccination induced stronger HER-2/neu-specific humoral and CTL immune responses than DCneu1 vaccination. DCneu2 vaccination protected all the mice from HER-2/neu-expressing Tg1-1 tumor cell challenge in wild-type FVB/NJ mice, compared to a partial protection in DCneu1-immunized mice. In addition, DCneu2 vaccination also significantly delayed tumor growth than DCneu1 immunization (P<0.05) in Tg FVBneuN mice. Three immunizations of DCneu2 starting at the mouse age of 2 months also significantly delayed breast cancer development in Tg mice compared to DCneu2 vaccine (P<0.05). Importantly, DCneu2 vaccine reduced breast carcinogenesis by 9% in Tg mice with self HER-2/neu tolerance. Therefore, vaccination of fiber-modified adenovirus-transfected DCs to enhance expression of tumor antigens such as HER-2/neu is likely representative of a new direction in DC-based vaccine of breast cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 1989; 244: 707–712.

    Article  CAS  PubMed  Google Scholar 

  2. Andrulis IL, Bull SB, Blackstein ME, Sutherland D, Mak C, Sidlofsky S et al. neu/erbB-2 amplification identifies a poor-prognosis group of women with node-negative breast cancer. Toronto Breast Cancer Study Group. J Clin Oncol 1998; 16: 1340–1349.

    Article  CAS  PubMed  Google Scholar 

  3. Disis ML, Pupa SM, Gralow JR, Dittadi R, Menard S, Cheever MA . High-titer HER-2/neu protein-specific antibody can be detected in patients with early-stage breast cancer. J Clin Oncol 1997; 15: 3363–3367.

    Article  CAS  PubMed  Google Scholar 

  4. Disis ML, Calenoff E, McLaughlin G, Murphy AE, Chen W, Groner B et al. Existent T-cell and antibody immunity to HER-2/neu protein in patients with breast cancer. Cancer Res 1994; 54: 16–20.

    CAS  PubMed  Google Scholar 

  5. Peoples GE, Goedegebuure PS, Smith R, Linehan DC, Yoshino I, Eberlein TJ . Breast and ovarian cancer-specific cytotoxic T lymphocytes recognize the same HER2/neu-derived peptide. Proc Natl Acad Sci USA 1995; 92: 432–436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schuler G, Koch F, Heufler C, Kampgen E, Topar G, Romani N . Murine epidermal Langerhans cells as a model to study tissue dendritic cells. Adv Exp Med Biol 1993; 329: 243–249.

    Article  CAS  PubMed  Google Scholar 

  7. Banchereau J, Steinman RM . Dendritic cells and the control of immunity. Nature 1998; 392: 245–252.

    Article  CAS  PubMed  Google Scholar 

  8. Thery C, Amigorena S . The cell biology of antigen presentation in dendritic cells. Curr Opin Immunol 2001; 13: 45–51.

    Article  CAS  PubMed  Google Scholar 

  9. Banchereau J, Palucka AK, Dhodapkar M, Burkeholder S, Taquet N, Rolland A et al. Immune and clinical responses in patients with metastatic melanoma to CD34(+) progenitor-derived dendritic cell vaccine. Cancer Res 2001; 61: 6451–6458.

    CAS  PubMed  Google Scholar 

  10. Disis ML, Rinn K, Knutson KL, Davis D, Caron D, dela Rosa C et al. Flt3 ligand as a vaccine adjuvant in association with HER-2/neu peptide-based vaccines in patients with HER-2/neu-overexpressing cancers. Blood 2002; 99: 2845–2850.

    Article  CAS  PubMed  Google Scholar 

  11. Ikuta Y, Katayama N, Wang L, Okugawa T, Takahashi Y, Schmitt M et al. Presentation of a major histocompatibility complex class 1-binding peptide by monocyte-derived dendritic cells incorporating hydrophobized polysaccharide-truncated HER2 protein complex: implications for a polyvalent immuno-cell therapy. Blood 2002; 99: 3717–3724.

    Article  CAS  PubMed  Google Scholar 

  12. Gabrilovich DI, Nadaf S, Corak J, Berzofsky JA, Carbone DP . Dendritic cells in antitumor immune responses. II. Dendritic cells grown from bone marrow precursors, but not mature DC from tumor-bearing mice, are effective antigen carriers in the therapy of established tumors. Cell Immunol 1996; 170: 111–119.

    Article  CAS  PubMed  Google Scholar 

  13. Timmerman JM, Czerwinski DK, Davis TA, Hsu FJ, Benike C, Hao ZM et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients. Blood 2002; 99: 1517–1526.

    Article  CAS  PubMed  Google Scholar 

  14. Nagata Y, Furugen R, Hiasa A, Ikeda H, Ohta N, Furukawa K et al. Peptides derived from a wild-type murine proto-oncogene c-erbB-2/HER2/neu can induce CTL and tumor suppression in syngeneic hosts. J Immunol 1997; 159: 1336–1343.

    CAS  PubMed  Google Scholar 

  15. Ercolini AM, Machiels JP, Chen YC, Slansky JE, Giedlen M, Reilly RT et al. Identification and characterization of the immunodominant rat HER-2/neu MHC class I epitope presented by spontaneous mammary tumors from HER-2/neu-transgenic mice. J Immunol 2003; 170: 4273–4280.

    Article  CAS  PubMed  Google Scholar 

  16. Nelson CA, Petzold SJ, Unanue ER . Peptides determine the lifespan of MHC class II molecules in the antigen-presenting cell. Nature 1994; 371: 250–252.

    Article  CAS  PubMed  Google Scholar 

  17. Levitsky V, Zhang QJ, Levitskaya J, Masucci MG . The life span of major histocompatibility complex-peptide complexes influences the efficiency of presentation and immunogenicity of two class I-restricted cytotoxic T lymphocyte epitopes in the Epstein–Barr virus nuclear antigen 4. J Exp Med 1996; 183: 915–926.

    Article  CAS  PubMed  Google Scholar 

  18. Lipford GB, Bauer S, Wagner H, Heeg K . In vivo CTL induction with point-substituted ovalbumin peptides: immunogenicity correlates with peptide-induced MHC class I stability. Vaccine 1995; 13: 313–320.

    Article  CAS  PubMed  Google Scholar 

  19. Lee WC, Wang HC, Hung CF, Huang PF, Lia CR, Chen MF . Vaccination of advanced hepatocellular carcinoma patients with tumor lysate-pulsed dendritic cells: a clinical trial. J Immunother 2005; 28: 496–504.

    Article  PubMed  Google Scholar 

  20. Pellegatta S, Poliani PL, Corno D, Grisoli M, Cusimano M, Ubiali F et al. Dendritic cells pulsed with glioma lysates induce immunity against syngeneic intracranial gliomas and increase survival of tumor-bearing mice. Neurol Res 2006; 28: 527–531.

    Article  CAS  PubMed  Google Scholar 

  21. Fallarino F, Grohmann U, Bianchi R, Vacca C, Fioretti MC, Puccetti P . Th1 and Th2 cell clones to a poorly immunogenic tumor antigen initiate CD8+ T cell-dependent tumor eradication in vivo. J Immunol 2000; 165: 5495–5501.

    Article  CAS  PubMed  Google Scholar 

  22. Chen Y, Emtage P, Zhu Q, Foley R, Muller W, Hitt M et al. Induction of ErbB-2/neu-specific protective and therapeutic antitumor immunity using genetically modified dendritic cells: enhanced efficacy by cotransduction of gene encoding IL-12. Gene Therapy 2001; 8: 316–323.

    Article  CAS  PubMed  Google Scholar 

  23. Chen Z, Huang H, Chang T, Carlsen S, Saxena A, Marr R et al. Enhanced HER-2/neu-specific antitumor immunity by cotransduction of mouse dendritic cells with two genes encoding HER-2/neu and alpha tumor necrosis factor. Cancer Gene Ther 2002; 9: 778–786.

    Article  CAS  PubMed  Google Scholar 

  24. zum Buschenfelde CM, Metzger J, Hermann C, Nicklisch N, Peschel C, Bernhard H . The generation of both T killer and Th cell clones specific for the tumor-associated antigen HER2 using retrovirally transduced dendritic cells. J Immunol 2001; 167: 1712–1719.

    Article  CAS  PubMed  Google Scholar 

  25. Czerniecki BJ, Koski GK, Koldovsky U, Xu S, Cohen PA, Mick R et al. Targeting HER-2/neu in early breast cancer development using dendritic cells with staged interleukin-12 burst secretion. Cancer Res 2007; 67: 1842–1852.

    Article  CAS  PubMed  Google Scholar 

  26. Dees EC, McKinnon KP, Kuhns JJ, Chwastiak KA, Sparks S, Myers M et al. Dendritic cells can be rapidly expanded ex vivo and safely administered in patients with metastatic breast cancer. Cancer Immunol Immunother 2004; 53: 777–785.

    Article  PubMed  Google Scholar 

  27. Sakai Y, Morrison BJ, Burke JD, Park JM, Terabe M, Janik JE et al. Vaccination by genetically modified dendritic cells expressing a truncated neu oncogene prevents development of breast cancer in transgenic mice. Cancer Res 2004; 64: 8022–8028.

    Article  CAS  PubMed  Google Scholar 

  28. Chan T, Sami A, El-Gayed A, Guo X, Xiang J . HER-2/neu-gene engineered dendritic cell vaccine stimulates stronger HER-2/neu-specific immune responses compared to DNA vaccination. Gene Therapy 2006; 13: 1391–1402.

    Article  CAS  PubMed  Google Scholar 

  29. Chen Y, Hu D, Eling DJ, Robbins J, Kipps TJ . DNA vaccines encoding full-length or truncated Neu induce protective immunity against Neu-expressing mammary tumors. Cancer Res 1998; 58: 1965–1971.

    CAS  PubMed  Google Scholar 

  30. Wright P, Braun R, Babiuk L, Littel-van den Hurk SD, Moyana T, Zheng C et al. Adenovirus-mediated TNF-alpha gene transfer induces significant tumor regression in mice. Cancer Biother Radiopharm 1999; 14: 49–57.

    Article  CAS  PubMed  Google Scholar 

  31. Okada N, Tsukada Y, Nakagawa S, Mizuguchi H, Mori K, Saito T et al. Efficient gene delivery into dendritic cells by fiber-mutant adenovirus vectors. Biochem Biophys Res Commun 2001; 282: 173–179.

    Article  CAS  PubMed  Google Scholar 

  32. Okada N, Masunaga Y, Okada Y, Iiyama S, Mori N, Tsuda T et al. Gene transduction efficiency and maturation status in mouse bone marrow-derived dendritic cells infected with conventional or RGD fiber-mutant adenovirus vectors. Cancer Gene Ther 2003; 10: 421–431.

    Article  CAS  PubMed  Google Scholar 

  33. Campbell M, Qu S, Wells S, Sugandha H, Jensen RA . An adenoviral vector containing an arg-gly-asp (RGD) motif in the fiber knob enhances protein product levels from transgenes refractory to expression. Cancer Gene Ther 2003; 10: 559–570.

    Article  CAS  PubMed  Google Scholar 

  34. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B . A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509–2514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu Y, Ye T, Sun D, Maynard J, Deisseroth A . Conditionally replication-competent adenoviral vectors with enhanced infectivity for use in gene therapy of melanoma. Hum Gene Ther 2004; 15: 637–647.

    Article  CAS  PubMed  Google Scholar 

  36. Zeng M, Smith SK, Siegel F, Shi Z, Van Kampen KR, Elmets CA et al. AdEasy system made easier by selecting the viral backbone plasmid preceding homologous recombination. Biotechniques 2001; 31: 260–262.

    Article  CAS  PubMed  Google Scholar 

  37. Xiang J, Qi Y, Cook D, Moyana T . Targeting gamma interferon to tumor cells by a genetically engineered fusion protein secreted from myeloma cells. Hum Antibodies Hybridomas 1996; 7: 2–10.

    Article  CAS  PubMed  Google Scholar 

  38. Maraskovsky E, Daro E, Roux E, Teepe M, Maliszewski CR, Hoek J et al. In vivo generation of human dendritic cell subsets by Flt3 ligand. Blood 2000; 96: 878–884.

    CAS  PubMed  Google Scholar 

  39. Ercolini AM, Ladle BH, Manning EA, Pfannenstiel LW, Armstrong TD, Machiels JP et al. Recruitment of latent pools of high-avidity CD8(+) T cells to the antitumor immune response. J Exp Med 2005; 201: 1591–1602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiang J, Huang H, Liu Y . A new dynamic model of CD8+ T effector cell responses via CD4+ T helper-antigen-presenting cells. J Immunol 2005; 174: 7497–7505.

    Article  CAS  PubMed  Google Scholar 

  41. Liu Y, Xia D, Li F, Zheng C, Xiang J . Intratumoral administration of immature dendritic cells following the adenovirus vector encoding CD40 ligand elicits significant regression of established myeloma. Cancer Gene Ther 2005; 12: 122–132.

    Article  CAS  PubMed  Google Scholar 

  42. Xiang J, Moyana T . Regression of engineered tumor cells secreting cytokines is related to a shift in host cytokine profile from type 2 to type 1. J Interferon Cytokine Res 2000; 20: 349–354.

    Article  CAS  PubMed  Google Scholar 

  43. Miller G, Lahrs S, Pillarisetty VG, Shah AB, DeMatteo RP . Adenovirus infection enhances dendritic cell immunostimulatory properties and induces natural killer and T-cell-mediated tumor protection. Cancer Res 2002; 62: 5260–5266.

    CAS  PubMed  Google Scholar 

  44. Dyer MR, Herrling PL . Progress and potential for gene-based medicines. Mol Ther 2000; 1: 213–224.

    Article  CAS  PubMed  Google Scholar 

  45. Marshall E . Gene therapy. Second child in French trial is found to have leukemia. Science 2003; 299: 320.

    Article  CAS  PubMed  Google Scholar 

  46. Graham FL . Adenovirus vectors for high-efficiency gene transfer into mammalian cells. Immunol Today 2000; 21: 426–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bergelson JM, Cunningham JA, Droguett G, Kurt-Jones EA, Krithivas A, Hong JS et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 1997; 275: 1320–1323.

    Article  CAS  PubMed  Google Scholar 

  48. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR . Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 1993; 73: 309–319.

    Article  CAS  PubMed  Google Scholar 

  49. Nemerow GR . Cell receptors involved in adenovirus entry. Virology 2000; 274: 1–4.

    Article  CAS  PubMed  Google Scholar 

  50. Huang S, Endo RI, Nemerow GR . Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. J Virol 1995; 69: 2257–2263.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Huang S, Kamata T, Takada Y, Ruggeri ZM, Nemerow GR . Adenovirus interaction with distinct integrins mediates separate events in cell entry and gene delivery to hematopoietic cells. J Virol 1996; 70: 4502–4508.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Okada N, Saito T, Masunaga Y, Tsukada Y, Nakagawa S, Mizuguchi H et al. Efficient antigen gene transduction using Arg-Gly-Asp fiber-mutant adenovirus vectors can potentiate antitumor vaccine efficacy and maturation of murine dendritic cells. Cancer Res 2001; 61: 7913–7919.

    CAS  PubMed  Google Scholar 

  53. Dietz AB, Bulur PA, Brown CA, Pankratz VS, Vuk-Pavlovic S . Maturation of dendritic cells infected by recombinant adenovirus can be delayed without impact on transgene expression. Gene Therapy 2001; 8: 419–423.

    Article  CAS  PubMed  Google Scholar 

  54. Pasare C, Medzhitov R . Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells. Science 2003; 299: 1033–1036.

    Article  CAS  PubMed  Google Scholar 

  55. Silva RA, Pais TF, Appelberg R . Evaluation of IL-12 in immunotherapy and vaccine design in experimental Mycobacterium avium infections. J Immunol 1998; 161: 5578–5585.

    CAS  PubMed  Google Scholar 

  56. Uekusa Y, Gao P, Yamaguchi N, Tomura M, Mukai T, Nakajima C et al. A role for endogenous IL-12 in tumor immunity: IL-12 is required for the acquisition of tumor-migratory capacity by T cells and the development of T cell-accepting capacity in tumor masses. J Leukoc Biol 2002; 72: 864–873.

    CAS  PubMed  Google Scholar 

  57. Cuello M, Ettenberg SA, Clark AS, Keane MM, Posner RH, Nau MM et al. Down-regulation of the erbB-2 receptor by trastuzumab (herceptin) enhances tumor necrosis factor-related apoptosis-inducing ligand-mediated apoptosis in breast and ovarian cancer cell lines that overexpress erbB-2. Cancer Res 2001; 61: 4892–4900.

    CAS  PubMed  Google Scholar 

  58. Guy CT, Webster MA, Schaller M, Parsons TJ, Cardiff RD, Muller WJ . Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc Natl Acad Sci USA 1992; 89: 10578–10582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Cifaldi L, Quaglino E, Di Carlo E, Musiani P, Spadaro M, Lollini PL et al. A light, nontoxic interleukin 12 protocol inhibits HER-2/neu mammary carcinogenesis in BALB/c transgenic mice with established hyperplasia. Cancer Res 2001; 61: 2809–2812.

    CAS  PubMed  Google Scholar 

  60. Reilly RT, Gottlieb MB, Ercolini AM, Machiels JP, Kane CE, Okoye FI et al. HER-2/neu is a tumor rejection target in tolerized HER-2/neu transgenic mice. Cancer Res 2000; 60: 3569–3576.

    CAS  PubMed  Google Scholar 

  61. Pupa SM, Invernizzi AM, Forti S, Di Carlo E, Musiani P, Nanni P et al. Prevention of spontaneous neu-expressing mammary tumor development in mice transgenic for rat proto-neu by DNA vaccination. Gene Therapy 2001; 8: 75–79.

    Article  CAS  PubMed  Google Scholar 

  62. Takeuchi N, Hiraoka S, Zhou XY, Nagafuku M, Ono S, Tsujimura T et al. Anti-HER-2/neu immune responses are induced before the development of clinical tumors but declined following tumorigenesis in HER-2/neu transgenic mice. Cancer Res 2004; 64: 7588–7595.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by research grants of Canadian Institutes of Health Research ((MOP 81228), Canadian Breast Cancer Foundation (G9519) and Saskatchewan Cancer Agency (5-753).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sas, S., Chan, T., Sami, A. et al. Vaccination of fiber-modified adenovirus-transfected dendritic cells to express HER-2/neu stimulates efficient HER-2/neu-specific humoral and CTL responses and reduces breast carcinogenesis in transgenic mice. Cancer Gene Ther 15, 655–666 (2008). https://doi.org/10.1038/cgt.2008.18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/cgt.2008.18

Keywords

This article is cited by

Search

Quick links