Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide association study of myelosuppression in non-small-cell lung cancer patients with platinum-based chemotherapy

Abstract

Platinum-induced myelosuppression severely impedes successful chemotherapy in non-small-cell lung cancer (NSCLC) patients. Hence, it is clinically important to identify the patients who are at high risk for severe toxicity to certain chemotherapy. We first carried out a genome-wide scan of 906 703 single-nucleotide polymorphisms (SNPs) to identify genetic variants associated with platinum-induced myelosuppression risk in 333 NSCLC patients with chemotherapy. Then, we replicated 24 SNPs that had P<1 × 10−4 in another independent cohort of 876 NSCLC patients. With P<0.05 as the criterion of statistical significance, we found that rs13014982 at 2q24.3 and rs9909179 at 17p12 exhibited consistently significant associations with myelosuppression risk in both the genome-wide association studies (GWAS) scan and the replication stage (rs13014982: odds ratio (OR)=0.55, 95% confidence intervals (CIs): 0.41–0.74, P=7.29 × 10−5 for GWAS scan and OR=0.77, 95% CI: 0.65–0.93, P=0.006 for replication stage; rs9909179: OR=0.51, 95% CI: 0.37–0.70, P=4.60 × 10−5 for GWAS scan and OR=0.82, 95% CI: 0.68–0.99, P=0.040 for replication stage; both in additive model). In combined samples of genome-wide scan and replication samples, the minor alleles of rs13014982 and rs9909179 remained significant associations with the decreased risk of myelosuppression (rs13014982: OR=0.71, 95% CI: 0.61–0.83, P =1.36 × 10−5; rs9909179: OR=0.76, 95% CI: 0.65–0.89, P=0.001). Rs13014982 at 2q24.3 and rs9909179 at 17p12 might be independent susceptibility markers for platinum-induced myelosuppression risk in NSCLC patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Parkin DM, Bray F, Ferlay J, Pisani P . Global cancer statistics, 2002. CA Cancer J Clin 2005; 55: 174–108.

    Article  Google Scholar 

  2. Shiraishi K, Kohno T, Tanai C, Goto Y, Kuchiba A, Yamamoto S, et al. Association of DNA repair gene polymorphisms with response to platinum-based doublet chemotherapy in patients with non-small-cell lung cancer. J Clin Oncol 2010; 28: 4945–4952.

    Article  CAS  PubMed  Google Scholar 

  3. McGuire WP, Hoskins WJ, Brady MF, Kucera PR, Partridge EE, Look KY, et al. Cyclophosphamide and cisplatin compared with paclitaxel and cisplatin in patients with stage III and stage IV ovarian cancer. N Engl J Med 1996; 334: 1–6.

    Article  CAS  PubMed  Google Scholar 

  4. Wu W, Zhang W, Qiao R, Chen D, Wang H, Wang Y, et al. Association of XPD polymorphisms with severe toxicity in non-small cell lung cancer patients in a Chinese population. Clin Cancer Res 2009; 15: 3889–3895.

    Article  CAS  PubMed  Google Scholar 

  5. Han B, Gao G, Wu W, Gao Z, Zhao X, Li L, et al. Association of ABCC2 polymorphisms with platinum-based chemotherapy response and severe toxicity in non-small cell lung cancer patients. Lung Cancer 2011; 72: 238–243.

    Article  PubMed  Google Scholar 

  6. Peng Y, Li Z, Zhang S, Xiong Y, Cun Y, Qian C, et al. Association of DNA base excision repair genes (OGG1, APE1 and XRCC1) polymorphisms with outcome to platinum-based chemotherapy in advanced nonsmall-cell lung cancer patients. Int J Cancer 2014; 135: 2687–2696.

    Article  CAS  PubMed  Google Scholar 

  7. Tan X, Wu Q, Cai Y, Zhao X, Wang S, Gao Z, et al. Novel association between CD74 polymorphisms and hematologic toxicity in patients with NSCLC after platinum-based chemotherapy. Clin Lung Cancer 2014; 15: 67–78.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou F, Gao G, Ren S, Li X, He Y, Zhou C . The association between COX-2 polymorphisms and hematologic toxicity in patients with advanced non-small-cell lung cancer treated with platinum-based chemotherapy. PLoS One 2013; 8: e61585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huang RS, Ratain MJ . Pharmacogenetics and pharmacogenomics of anticancer agents. CA Cancer J Clin 2009; 59: 42–55.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hardy J, Singleton A . Genomewide association studies and human disease. N Engl J Med 2009; 360: 1759–1768.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Manolio TA, Brooks LD, Collins FS . A HapMap harvest of insights into the genetics of common disease. J Clin Invest 2008; 118: 1590–1605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hu L, Wu C, Zhao X, Heist R, Su L, Zhao Y, et al. Genome-wide association study of prognosis in advanced non-small cell lung cancer patients receiving platinum-based chemotherapy. Clin Cancer Res 2012; 18: 5507–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ihaka R, Gentleman R . R: A language for data analysis and graphics. J Comput Graph Stat 1996; 5: 299–314.

    Google Scholar 

  15. Bender R, Grouven U . Ordinal logistic regression in medical research. J R Coll Physicians Lond 1997; 31: 546–551.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Y, Willer C, Sanna S, Abecasis G . Genotype imputation. Annu Rev Genom Hum Genet 2009; 10: 387–406.

    Article  CAS  Google Scholar 

  17. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313: 1137–1140.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mukherjee S, Diaz Valencia JD, Stewman S, Metz J, Monnier S, Rath U, et al. Human Fidgetin is a microtubule severing the enzyme and minus-end depolymerase that regulates mitosis. Cell Cycle 2012; 11: 2359–2366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kato N, Takeuchi F, Tabara Y, Kelly TN, Go MJ, Sim X, et al. Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians. Nat Genet 2011; 43: 531–538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wain LV, Verwoert GC, O'Reilly PF, Shi G, Johnson T, Johnson AD, et al. Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure. Nat Genet 2011; 43: 1005–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Furuta B, Harada A, Kobayashi Y, Takeuchi K, Kobayashi T, Umeda M . Identification and functional characterization of nadrin variants, a novel family of GTPase activating protein for rho GTPases. J Neurochem 2002; 82: 1018–1028.

    Article  CAS  PubMed  Google Scholar 

  22. Richnau N, Aspenström P . Rich, a rho GTPase-activating protein domain-containing protein involved in signaling by Cdc42 and Rac1. J Biol Chem 2001; 276: 35060–35070.

    Article  CAS  PubMed  Google Scholar 

  23. Rollason R, Korolchuk V, Hamilton C, Jepson M, Banting G . A CD317/tetherin-RICH2 complex plays a critical role in the organization of the subapical actin cytoskeleton in polarized epithelial cells. J Cell Biol 2009; 184: 721–736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Low SK, Chung S, Takahashi A, Zembutsu H, Mushiroda T, Kubo M, et al. Genome-wide association study of chemotherapeutic agent-induced severe neutropenia/leucopenia for patients in Biobank Japan. Cancer Sci 2013; 104: 1074–1082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Both J, Wu T, Bras J, Schaap GR, Baas F, Hulsebos TJ . Identification of novel candidate oncogenes in chromosome region 17p11.2–p12 in human osteosarcoma. PLoS One 2012; 7: e30907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. International Cancer Genome Consortium International Cancer Genome Consortium, Hudson TJ, International Cancer Genome Consortium Anderson W, International Cancer Genome Consortium Artez A, International Cancer Genome Consortium Barker AD, International Cancer Genome Consortium Bell C, et al. International network of cancer genome projects. Nature 2010; 464: 993–998.

    Article  Google Scholar 

  27. Tavtigian SV, Simard J, Teng DH, Abtin V, Baumgard M, Beck A, et al. A candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 2001; 27: 172–180.

    Article  CAS  PubMed  Google Scholar 

  28. Korver W, Guevara C, Chen Y, Neuteboom S, Bookstein R, Tavtigian S, et al. The product of the candidate prostate cancer susceptibility gene ELAC2 interacts with the gamma-tubulin complex. Int J Cancer 2003; 104: 283–288.

    Article  CAS  PubMed  Google Scholar 

  29. Xu B, Tong N, Li JM, Zhang ZD, Wu HF . ELAC2 polymorphisms and prostate cancer risk: a meta-analysis based on 18 case–control studies. Prostate Cancer Prostatic Dis 2010; 13: 270–277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Chen YC, Giovannucci E, Kraft P, J Hunter D . Sequence variants of elaC homolog 2 (Escherichia coli) (ELAC2) gene and susceptibility to prostate cancer in the Health Professionals Follow-Up Study. Carcinogenesis 2008; 29: 999–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yokomizo A, Koga H, Kinukawa N, Tsukamoto T, Hirao Y, Akaza H, et al. HPC2/ELAC2 polymorphism associated with Japanese sporadic prostate cancer. Prostate 2004; 61: 248–252.

    Article  CAS  PubMed  Google Scholar 

  32. Nakano T, Shimizu K, Kawashima O, Kamiyoshihara M, Kakegawa S, Sugano M, et al. Establishment of a human lung cancer cell line with high metastatic potential to multiple organs: gene expression associated with metastatic potential in human lung cancer. Oncol Rep 2012; 28: 1727–1735.

    Article  PubMed  Google Scholar 

  33. GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat Genet 2013; 45: 580–585.

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (81270044 and 81230067), National Outstanding Youth Science Foundation of China (81225020), Science Foundation for Distinguished Young Scholars of Jiangsu (BK2012042), Key Grant of Natural Science Foundation of Jiangsu Higher Education Institutions (11KJA330001), Natural Science Foundation of Jiangsu Province (BK2012042), New Century Excellent Talents in University (NCET-10-0178), Changjiang Scholars and Innovative Research Team in University (IRT0631), The Young Talents Support Program from the Organization Department of the CPC Central Committee, Jiangsu Province Clinical Science and Technology Projects (BL2012008) and Priority Academic Program Development of Jiangsu Higher Education Institutions (Public Health and Preventive Medicine).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H Ma, D Lu or H Shen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, S., Wang, S., Ma, H. et al. Genome-wide association study of myelosuppression in non-small-cell lung cancer patients with platinum-based chemotherapy. Pharmacogenomics J 16, 41–46 (2016). https://doi.org/10.1038/tpj.2015.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2015.22

This article is cited by

Search

Quick links