Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Network analysis of gene expression in peripheral blood identifies mTOR and NF-κB pathways involved in antipsychotic-induced extrapyramidal symptoms

Abstract

To identify the candidate genes for pharmacogenetic studies of antipsychotic (AP)-induced extrapyramidal symptoms (EPS), we propose a systems biology analytical approach, based on protein–protein interaction network construction and functional annotation analysis, of changes in gene expression (Human Genome U219 Array Plate) induced by treatment with risperidone or paliperidone in peripheral blood. 12 AP-naïve patients with first-episode psychosis participated in the present study. Our analysis revealed that, in response to AP treatment, constructed networks were enriched for different biological processes in patients without EPS (ubiquitination, protein folding and adenosine triphosphate (ATP) metabolism) compared with those presenting EPS (insulin receptor signaling, lipid modification, regulation of autophagy and immune response). Moreover, the observed differences also involved specific pathways, such as anaphase promoting complex /cdc20, prefoldin/CCT/triC and ATP synthesis in no-EPS patients, and mammalian target of rapamycin and NF-κB kinases in patients with EPS. Our results showing different patterns of gene expression in EPS patients, offer new and valuable markers for pharmacogenetic studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Lafuente A, Bernardo M, Mas S, Crescenti A, Aparici M, Gassó P et al. Polymorphism of dopamine D2 receptor (TaqIA, TaqIB, and-141C Ins/Del) and dopamine degradation enzyme (COMT G158A, A-278G) genes and extrapyramidal symptoms in patients with schizophrenia and bipolar disorders. Psychiatry Res 2008; 161: 131–141.

    Article  CAS  Google Scholar 

  2. Gassó P, Mas S, Bernardo M, Alvarez S, Parellada E, Lafuente A . A common variant in DRD3 gene is associated with risperidone-induced extrapyramidal symptoms. Pharmacogenomics J 2009; 9: 404–410.

    Article  Google Scholar 

  3. Llerena A, Berecz R, Peñas-Lledó E, Süveges A, Fariñas H . Pharmacogenetics of clinical response to risperidone. Pharmacogenomics 2013; 14: 177–194.

    Article  CAS  Google Scholar 

  4. Mas S, Llerena A, Saíz J, Bernardo M, Lafuente A . Strengths and weaknesses of pharmacogenetic studies of antipsychotic drugs: the potential value of the PEPs study. Pharmacogenomics 2012; 13: 1773–1782.

    Article  CAS  Google Scholar 

  5. Ikeda M, Tomita Y, Mouri A, Koga M, Okochi T, Yoshimura R et al. Identification of novel candidate genes for treatment response to risperidone and susceptibility for schizophrenia: integrated analysis among pharmacogenomics, mouse expression, and genetic case-control association approaches. Biol Psychiatry 2010; 67: 263–269.

    Article  CAS  Google Scholar 

  6. Niculescu AB, Le-Niculescu H . Convergent Functional Genomics: what we have learned and can learn about genes, pathways, and mechanisms. Neuropsychopharmacology 2010; 35: 355–356.

    Article  Google Scholar 

  7. Ayalew M, Le-Niculescu H, Levey DF, Jain N, Changala B, Patel SD et al. Convergent functional genomics of schizophrenia: from comprehensive understanding to genetic risk prediction. Mol Psychiatry 2012; 17: 887–905.

    Article  CAS  Google Scholar 

  8. Kuzman MR, Medved V, Terzic J, Krainc D . Genome-wide expression analysis of peripheral blood identifies candidate biomarkers for schizophrenia. J Psychiatr Res 2009; 43: 1073–1077.

    Article  Google Scholar 

  9. Sullivan PF, Fan C, Perou CM . Evaluating the comparability of gene expression in blood and brain. Am J Med Genet B Neuropsychiatr Genet 2006; 141B: 261–268.

    Article  Google Scholar 

  10. Buttarelli FR, Fanciulli A, Pellicano C, Pontieri FE . The dopaminergic system in peripheral blood lymphocytes: from physiology to pharmacology and potential applications to neuropsychiatric disorders. Curr Neuropharmacol 2011; 9: 278–288.

    Article  CAS  Google Scholar 

  11. Rivera-Baltanas T, Olivares JM, Martinez-Villamarin JR, Fenton EY, Kalynchuk LE, Caruncho HJ . Serotonin 2A receptor clustering in peripheral lymphocytes is altered in major depression and may be a biomarker of therapeutic efficacy. J Affect Disord 2014; 163: 47–55.

    Article  CAS  Google Scholar 

  12. Minguez P, Dopazo J . Functional genomics and networks: new approaches in the extraction of complex gene modules. Expert Rev Proteomics 2010; 7: 55–63.

    Article  CAS  Google Scholar 

  13. García-Alonso L, Alonso R, Vidal E, Amadoz A, de María A, Minguez P et al. Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments. Nucleic Acids Res 2012; 40: e158.

    Article  Google Scholar 

  14. Minguez P, Götz S, Montaner D, Al-Shahrour F, Dopazo J . SNOW, a web-based tool for the statistical analysis of protein-protein interaction networks. Nucleic Acids Res 2009; 37: W109–W114.

    Article  CAS  Google Scholar 

  15. Minguez P, Dopazo J . Assessing the biological significance of gene expression signatures and co-expression modules by studying their network properties. PLoS One 2011; 6: e17474.

    Article  CAS  Google Scholar 

  16. Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009; 25: 1091–1093.

    Article  CAS  Google Scholar 

  17. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000; 25: 25–29.

    Article  CAS  Google Scholar 

  18. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 2005; 33: D428–D432.

    Article  CAS  Google Scholar 

  19. Zheng W, Wang H, Zeng Z, Lin J, Little PJ, Srivastava LK et al. The possible role of the Akt signaling pathway in schizophrenia. Brain Res 2012; 1470: 145–158.

    Article  CAS  Google Scholar 

  20. Freyberg Z, Ferrando SJ, Javitch JA . Roles of the Akt/GSK-3 and Wnt signaling pathways in schizophrenia and antipsychotic drug action. Am J Psychiatry 2010; 167: 388–396.

    Article  Google Scholar 

  21. Altar CA, Jurata LW, Charles V, Lemire A, Liu P, Bukhman Y et al. Deficient hippocampal neuron expression of proteasome, ubiquitin, and mitochondrial genes in multiple schizophrenia cohorts. Biol Psychiatry 2005; 58: 85–96.

    Article  CAS  Google Scholar 

  22. Rubio MD, Wood K, Haroutunian V, Meador-Woodruff JH . Dysfunction of the ubiquitin proteasome and ubiquitin-like systems in schizophrenia. Neuropsychopharmacology 2013; 38: 1910–1920.

    Article  CAS  Google Scholar 

  23. Bousman CA, Chana G, Glatt SJ, Chandler SD, Lucero GR, Tatro E et al. Preliminary evidence of ubiquitin proteasome system dysregulation in schizophrenia and bipolar disorder: convergent pathway analysis findings from two independent samples. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 494–502.

    Article  CAS  Google Scholar 

  24. Bousman CA, Chana G, Glatt SJ, Chandler SD, May T, Lohr J et al. Positive symptoms of psychosis correlate with expression of ubiquitin proteasome genes in peripheral blood. Am J Med Genet B Neuropsychiatr Genet 2010; 153B: 1336–1341.

    Article  Google Scholar 

  25. Atkin T, Kittler J . DISC1 and the aggresome: a disruption to cellular function? Autophagy 2012; 8: 851–852.

    Article  CAS  Google Scholar 

  26. Atkin TA, Brandon NJ, Kittler JT . Disrupted in Schizophrenia 1 forms pathological aggresomes that disrupt its function in intracellular transport. Hum Mol Genet 2012; 21: 2017–2028.

    Article  CAS  Google Scholar 

  27. Korth C . Aggregated proteins in schizophrenia and other chronic mental diseases: DISC1opathies. Prion 2012; 6: 134–141.

    Article  CAS  Google Scholar 

  28. Peters JM . The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 2006; 7: 644–656.

    Article  CAS  Google Scholar 

  29. García-Higuera I, Manchado E, Dubus P, Cañamero M, Méndez J, Moreno S et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nat Cell Biol 2008; 10: 802–811.

    Article  Google Scholar 

  30. Yang Y, Kim AH, Bonni A . The dynamic ubiquitin ligase duo: Cdh1-APC and Cdc20-APC regulate neuronal morphogenesis and connectivity. Curr Opin Neurobiol 2010; 20: 92–99.

    Article  CAS  Google Scholar 

  31. Kim AH, Puram SV, Bilimoria PM, Ikeuchi Y, Keough S, Wong M et al. A centrosomal Cdc20-APC pathway NO-EPS dendrite morphogenesis in postmitotic neurons. Cell 2009; 136: 322–336.

    Article  CAS  Google Scholar 

  32. Chen S, Owens GC, Makarenkova H, Edelman DB . HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS One 2010; 5: e10848.

    Article  Google Scholar 

  33. Swinnen E, Büttner S, Outeiro TF, Galas MC, Madeo F, Winderickx J et al. Aggresome formation and segregation of inclusions influence toxicity of α-synuclein and synphilin-1 in yeast. Biochem Soc Trans 2011; 39: 1476–1481.

    Article  CAS  Google Scholar 

  34. Rezin GT, Amboni G, Zugno AI, Quevedo J, Streck EL . Mitochondrial dysfunction and psychiatric disorders. Neurochem Res 2009; 34: 1021–1029.

    Article  CAS  Google Scholar 

  35. Dror N, Klein E, Karry R, Sheinkman A, Kirsh Z, Mazor M et al. State-dependent alterations in mitochondrial complex I activity in platelets: a potential peripheral marker for schizophrenia. Mol Psychiatry 2002; 7: 995–1001.

    Article  CAS  Google Scholar 

  36. Park YU, Jeong J, Lee H, Mun JY, Kim JH, Lee JS et al. Disrupted-in-schizophrenia 1 (DISC1) plays essential roles in mitochondria in collaboration with Mitofilin. Proc Natl Acad Sci USA 2010; 107: 17785–17790.

    Article  CAS  Google Scholar 

  37. Gutierrez H, Davies AM . Regulation of neural process growth, elaboration and structural plasticity by NF-κB. Trends Neurosci 2011; 34: 316–325.

    Article  CAS  Google Scholar 

  38. Buckley PF, Pillai A, Howell KR . Brain-derived neurotrophic factor: findings in schizophrenia. Curr Opin Psychiatry 2011; 24: 122–127.

    Article  Google Scholar 

  39. Dean B . Understanding the role of inflammatory-related pathways in the pathophysiology and treatment of psychiatric disorders: evidence from human peripheral studies and CNS studies. Int J Neuropsychopharmacol 2011; 14: 997–1012.

    Article  CAS  Google Scholar 

  40. Javitt DC, Schoepp D, Kalivas PW, Volkow ND, Zarate C, Merchant K et al. Translating glutamate: from pathophysiology to treatment. Sci Transl Med 2011; 3: 102mr2.

    Article  Google Scholar 

  41. Watanabe Y, Someya T, Nawa H . Cytokine hypothesis of schizophrenia pathogenesis: evidence from human studies and animal models. Psychiatry Clin Neurosci 2010; 64: 217–230.

    Article  CAS  Google Scholar 

  42. Willard SS, Koochekpour S . Glutamate, glutamate receptors, and downstream signaling pathways. Int J Biol Sci 2013; 9: 948–959.

    Article  CAS  Google Scholar 

  43. Song XQ, Lv LX, Li WQ, Hao YH, Zhao JP . The interaction of nuclear factor-kappa B and cytokines is associated with schizophrenia. Biol Psychiatry 2009; 65: 481–488.

    Article  CAS  Google Scholar 

  44. Sun J, Jia P, Fanous AH, van den Oord E, Chen X, Riley BP et al. Schizophrenia gene networks and pathways and their applications for novel candidate gene selection. PLoS One 2010; 5: e11351.

    Article  Google Scholar 

  45. Roussos P, Katsel P, Davis KL, Giakoumaki SG, Lencz T, Malhotra AK et al. Convergent findings for abnormalities of the NF-κB signaling pathway in schizophrenia. Neuropsychopharmacology 2013; 38: 533–539.

    Article  CAS  Google Scholar 

  46. Chen ML, Tsai TC, Lin YY, Tsai YM, Wang LK, Lee MC et al. Antipsychotic drugs suppress the AKT/NF-κB pathway and regulate the differentiation of T-cell subsets. Immunol Lett 2011; 140: 81–91.

    Article  CAS  Google Scholar 

  47. Rizig MA, McQuillin A, Ng A, Robinson M, Harrison A, Zvelebil M et al. A gene expression and systems pathway analysis of the effects of clozapine compared to haloperidol in the mouse brain implicates susceptibility genes for schizophrenia. J Psychopharmacol 2012; 26: 1218–1230.

    Article  CAS  Google Scholar 

  48. Bishnoi M, Chopra K, Kulkarni SK . Differential striatal levels of TNF-alpha, NFkappaB p65 subunit and dopamine with chronic typical and atypical neuroleptic treatment: role in orofacial dyskinesia. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32: 1473–1478.

    Article  CAS  Google Scholar 

  49. Saldaña M, Bonastre M, Aguilar E, Marin C . Role of nigral NFkappaB p50 and p65 subunit expression in haloperidol-induced neurotoxicity and stereotyped behavior in rats. Eur Neuropsychopharmacol 2006; 16: 491–497.

    Article  Google Scholar 

  50. Liou YJ, Wang HH, Lee MT, Wang SC, Chiang HL, Chen CC et al. Genome-wide association study of treatment refractory schizophrenia in Han Chinese. PLoS One 2012; 7: e33598.

    Article  CAS  Google Scholar 

  51. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    Article  CAS  Google Scholar 

  52. Hardie DG . Role of AMP-activated protein kinase in the metabolic syndrome and in heart disease. FEBS Lett 2008; 582: 81–89.

    Article  CAS  Google Scholar 

  53. Laplante M, Sabatini DM . mTOR signaling at a glance. J Cell Sci 2009; 122: 3589–3594.

    Article  CAS  Google Scholar 

  54. Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126: 955–968.

    Article  CAS  Google Scholar 

  55. Porstmann T, Santos CR, Griffiths B, Cully M, Wu M, Leevers S et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab 2008; 8: 224–236.

    Article  CAS  Google Scholar 

  56. Kim JE, Chen J . Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 2004; 53: 2748–2756.

    Article  CAS  Google Scholar 

  57. Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010; 39: 171–183.

    Article  Google Scholar 

  58. Schmidt RH, Jokinen JD, Massey VL, Falkner KC, Shi X, Yin X et al. Olanzapine activates hepatic mammalian target of rapamycin: new mechanistic insight into metabolic dysregulation with atypical antipsychotic drugs. J Pharmacol Exp Ther 2013; 347: 126–135.

    Article  CAS  Google Scholar 

  59. Levine B, Klionsky DJ . Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004; 6: 463–477.

    Article  CAS  Google Scholar 

  60. Lee KM, Hwang SK, Lee JA . Neuronal Autophagy and Neurodevelopmental Disorders. Exp Neurobiol 2013; 22: 133–142.

    Article  Google Scholar 

  61. Inoue K, Rispoli J, Yang L, Macleod D, Beal MF, Klann E et al. Coordinate regulation of mature dopaminergic axon morphology by macroautophagy and the PTEN signaling pathway. PLoS Genet 2013; 9: e1003845.

    Article  Google Scholar 

  62. Merenlender-Wagner A, Malishkevich A, Shemer Z, Udawela M, Gibbons A, Scarr E et al. Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatry 2013; e-pub ahead of print 2013doi:10.1038/mp.2013.174.

  63. Park J, Chung S, An H, Kim J, Seo J, Kim DH et al. Haloperidol and clozapine block formation of autophagolysosomes in rat primary neurons. Neuroscience 2012; 209: 64–73.

    Article  CAS  Google Scholar 

  64. Shin SY, Lee KS, Choi YK, Lim HJ, Lee HG, Lim Y et al. The antipsychotic agent chlorpromazine induces autophagic cell death by inhibiting the Akt/mTOR pathway in human U-87MG glioma cells. Carcinogenesis 2013; 34: 2080–2089.

    Article  CAS  Google Scholar 

  65. Shin JH, Park SJ, Kim ES, Jo YK, Hong J, Cho DH . Sertindole a potent antagonist at dopamine D2 receptors, induces autophagy by increasing reactive oxygen species in SH-SY5Y neuroblastoma cells. Biol Pharm Bull 2012; 35: 1069–1075.

    Article  CAS  Google Scholar 

  66. Bonito-Oliva A, Pallottino S, Bertran-Gonzalez J, Girault JA, Valjent E, Fisone G . Haloperidol promotes mTORC1-dependent phosphorylation of ribosomal protein S6 via dopamine- and cAMP-regulated phosphoprotein of 32 kDa and inhibition of protein phosphatase-1. Neuropharmacology 2013; 72: 197–203.

    Article  CAS  Google Scholar 

  67. Korostynski M, Piechota M, Dzbek J, Mlynarski W, Szklarczyk K, Ziolkowska B et al. Novel drug-regulated transcriptional networks in brain reveal pharmacological properties of psychotropic drugs. BMC Genomics 2013; 14: 606.

    Article  CAS  Google Scholar 

  68. Mas S, Gassó P, Ritter MA, Malagelada C, Bernardo M, Lafuente A Pharmacogenetic predictor of extrapyramidal symptoms induced by antipsychotics: Multilocus interaction in the mTOR pathway. Eur Neuropsychopharmacol 2014; e-pub ahead of print; doi: 10.1016/j.euroneuro.2014.11.011.

  69. Mas S, Gassó P, Bernardo M, Lafuente A . Functional analysis of gene expression in risperidone treated cells provide new insights in molecular mechanism and new candidate genes for pharmacogenetic studies. Eur Neuropsychopharmacol 2013; 23: 329–337.

    Article  CAS  Google Scholar 

  70. Marder SR . Perspective: retreat from the radical. Nature 2014; 508: S18.

    Article  CAS  Google Scholar 

  71. Hyman SE . Perspective: revealing molecular secrets. Nature 2014; 508: S20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Spanish Ministry of Health, Instituto de Salud Carlos III (FIS, Fondo de Investigacion Sanitaria PI10/02430) and the Catalan Innovation, Universities and Enterprise Authority (Grants DURSI 2009SGR1295, 2009SGR1501); and ‘Sara Borrell’ contract from the Spanish Ministry of Health, Instituto de Salud Carlos III (FIS, Fondo de Investigación Sanitaria) (Grant CD09/00296) (to P.G.). The authors thank the Language Advisory Service of the University of Barcelona, Spain for manuscript revision. The authors also thank Ana Meseguer for sample collection assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Lafuente.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website .

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mas, S., Gassó, P., Parellada, E. et al. Network analysis of gene expression in peripheral blood identifies mTOR and NF-κB pathways involved in antipsychotic-induced extrapyramidal symptoms. Pharmacogenomics J 15, 452–460 (2015). https://doi.org/10.1038/tpj.2014.84

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.84

This article is cited by

Search

Quick links