Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Methotrexate consolidation treatment according to pharmacogenetics of MTHFR ameliorates event-free survival in childhood acute lymphoblastic leukaemia

Abstract

Recent advances in treatment for childhood acute lymphoblastic leukaemia (ALL) have significantly increased outcome. High-dose methotrexate (MTX) is the most commonly used regimen during the consolidation period, but the optimal dose remains to be defined. We investigated the usefulness of the MTHFR genotype to increase the MTX dosage in the consolidation phase in 141 childhood ALL patients enrolled in the ALL/SHOP-2005 protocol. We also investigated the pharmacogenetic role of polymorphisms in genes involved in MTX metabolism on therapy-related toxicity and survival. Patients with a favourable MTHFR genotype (normal enzymatic activity) treated with MTX doses of 5 g m−2 had a significantly lower risk of suffering an event than patients with an unfavourable MTHFR genotype (reduced enzymatic activity) that were treated with the classical MTX dose of 3 g m−2 (P=0.012). Our results indicate that analysis of the MTHFR genotype is a useful tool to optimise MTX therapy in childhood patients with ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Ansari M, Krajinovic M . Pharmacogenomics in cancer treatment defining genetic bases for inter-individual differences in responses to chemotherapy. Curr Opin Pediatr 2007; 19: 15–22.

    Article  PubMed  Google Scholar 

  2. Pui CH, Evans WE . Treatment of acute lymphoblastic leukemia. N Engl J Med 2006; 354: 166–178.

    Article  CAS  PubMed  Google Scholar 

  3. Jeha S, Pui CH . Risk-adapted treatment of pediatric acute lymphoblastic leukemia. Hematol Oncol Clin North Am 2009; 23: 973–990.

    Article  PubMed  Google Scholar 

  4. Cheok MH, Evans WE . Acute lymphoblastic leukaemia: a model for the pharmacogenomics of cancer therapy. Nat Rev Cancer 2006; 6: 117–129.

    Article  CAS  PubMed  Google Scholar 

  5. Laverdiere C, Chiasson S, Costea I, Moghrabi A, Krajinovic M . Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood 2002; 100: 3832–3834.

    Article  PubMed  Google Scholar 

  6. Dulucq S, St-Onge G, Gagne V, Ansari M, Sinnett D, Labuda D et al. DNA variants in the dihydrofolate reductase gene and outcome in childhood ALL. Blood 2008; 111: 3692–3700.

    Article  CAS  PubMed  Google Scholar 

  7. Al-Shakfa F, Dulucq S, Brukner I, Milacic I, Ansari M, Beaulieu P et al. DNA variants in region for noncoding interfering transcript of dihydrofolate reductase gene and outcome in childhood acute lymphoblastic leukemia. Clin Cancer Res 2009; 15: 6931–6938.

    Article  CAS  PubMed  Google Scholar 

  8. Horie N, Aiba H, Oguro K, Hojo H, Takeishi K . Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct 1995; 20: 191–197.

    Article  CAS  PubMed  Google Scholar 

  9. Kawakami K, Salonga D, Park JM, Danenberg KD, Uetake H, Brabender J et al. Different lengths of a polymorphic repeat sequence in the thymidylate synthase gene affect translational efficiency but not its gene expression. Clin Cancer Res 2001; 7: 4096–4101.

    CAS  PubMed  Google Scholar 

  10. Mandola MV, Stoehlmacher J, Muller-Weeks S, Cesarone G, Yu MC, Lenz HJ et al. A novel single nucleotide polymorphism within the 5′ tandem repeat polymorphism of the thymidylate synthase gene abolishes USF-1 binding and alters transcriptional activity. Cancer Res 2003; 63: 2898–2904.

    CAS  PubMed  Google Scholar 

  11. Krajinovic M, Costea I, Chiasson S . Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet 2002; 359: 1033–1034.

    Article  CAS  PubMed  Google Scholar 

  12. Krajinovic M, Costea I, Primeau M, Dulucq S, Moghrabi A . Combining several polymorphisms of thymidylate synthase gene for pharmacogenetic analysis. Pharmacogenomics J 2005; 5: 374–380.

    Article  CAS  PubMed  Google Scholar 

  13. Gorlick R, Goker E, Trippett T, Waltham M, Banerjee D, Bertino JR . Intrinsic and acquired resistance to methotrexate in acute leukemia. N Engl J Med 1996; 335: 1041–1048.

    Article  CAS  Google Scholar 

  14. Costea I, Moghrabi A, Krajinovic M . The influence of cyclin D1 (CCND1) 870A>G polymorphism and CCND1-thymidylate synthase (TS) gene-gene interaction on the outcome of childhood acute lymphoblastic leukaemia. Pharmacogenetics 2003; 13: 577–580.

    Article  CAS  PubMed  Google Scholar 

  15. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 111–113.

    Article  CAS  PubMed  Google Scholar 

  16. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R . A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 1998; 64: 169–172.

    Article  CAS  PubMed  Google Scholar 

  17. Schmiegelow K . Advances in individual prediction of methotrexate toxicity: a review. Br J Haematol 2009; 146: 489–503.

    Article  CAS  PubMed  Google Scholar 

  18. Miller SA, Dykes DD, Polesky HF . A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kawakami K, Watanabe G . Identification and functional analysis of single nucleotide polymorphism in the tandem repeat sequence of thymidylate synthase gene. Cancer Res 2003; 63: 6004–6007.

    CAS  PubMed  Google Scholar 

  20. Marcuello E, Altes A, Menoyo A, Rio ED, Baiget M . Methylenetetrahydrofolate reductase gene polymorphisms: genomic predictors of clinical response to fluoropyrimidine-based chemotherapy? Cancer Chemother Pharmacol 2006; 57: 835–840.

    Article  CAS  PubMed  Google Scholar 

  21. Badell I, Munoz A, Estella J, Fernandez-Delgado R, Javier G, Verdeguer A et al. Long-term results of two consecutive trials in childhood acute lymphoblastic leukaemia performed by the Spanish Cooperative Group for Childhood Acute Lymphoblastic Leukemia Group (SHOP) from 1989 to 1998. Clin Transl Oncol 2008; 10: 117–124.

    Article  CAS  PubMed  Google Scholar 

  22. Krajinovic M, Lemieux-Blanchard E, Chiasson S, Primeau M, Costea I, Moghrabi A . Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J 2004; 4: 66–72.

    Article  CAS  PubMed  Google Scholar 

  23. Aplenc R, Thompson J, Han P, La M, Zhao H, Lange B et al. Methylenetetrahydrofolate reductase polymorphisms and therapy response in pediatric acute lymphoblastic leukemia. Cancer Res 2005; 65: 2482–2487.

    Article  CAS  PubMed  Google Scholar 

  24. Pietrzyk JJ, Bik-Multanowski M, Balwierz W, Skoczen S, Wojcik D, Chybicka A et al. Additional genetic risk factor for death in children with acute lymphoblastic leukemia: a common polymorphism of the MTHFR gene. Pediatr Blood Cancer 2009; 52: 364–368.

    Article  PubMed  Google Scholar 

  25. Yarlagadda SG, Perazella MA . Drug-induced crystal nephropathy: an update. Expert Opin Drug Saf 2008; 7: 147–158.

    Article  CAS  PubMed  Google Scholar 

  26. Turello R, Rentsch K, Di Paolo E, Popovic MB . Renal failure after high-dose methotrexate in a child homozygous for MTHFR C677T polymorphism. Pediatr Blood Cancer 2008; 50: 154–156.

    Article  PubMed  Google Scholar 

  27. Gammon DC, Bhatt MS, Patel B, Anderson M, Van Horn A, Glantz MJ . Managing reduced methotrexate clearance in a patient with a heterozygous methylenetetrahydrofolate reductase gene polymorphism. J Oncol Pharm Pract 2008; 14: 153–156.

    Article  PubMed  Google Scholar 

  28. Kantar M, Kosova B, Cetingul N, Gumus S, Toroslu E, Zafer N et al. Methylenetetrahydrofolate reductase C677T and A1298C gene polymorphisms and therapy-related toxicity in children treated for acute lymphoblastic leukemia and non-Hodgkin lymphoma. Leuk Lymphoma 2009; 50: 912–917.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to the members of the Spanish Society of Paediatric Haematology and Oncology who participated in the ALL/SHOP-2005 protocol. We thank Carolyn Newey for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I Badell.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar, J., Altés, A., del Río, E. et al. Methotrexate consolidation treatment according to pharmacogenetics of MTHFR ameliorates event-free survival in childhood acute lymphoblastic leukaemia. Pharmacogenomics J 12, 379–385 (2012). https://doi.org/10.1038/tpj.2011.25

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2011.25

Keywords

This article is cited by

Search

Quick links