Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mathematical modeling of cancer immunotherapy for personalized clinical translation

Abstract

Encouraging advances are being made in cancer immunotherapy modeling, especially in the key areas of developing personalized treatment strategies based on individual patient parameters, predicting treatment outcomes and optimizing immunotherapy synergy when used in combination with other treatment approaches. Here we present a focused review of the most recent mathematical modeling work on cancer immunotherapy with a focus on clinical translatability. It can be seen that this field is transitioning from pure basic science to applications that can make impactful differences in patients’ lives. We discuss how researchers are integrating experimental and clinical data to fully inform models so that they can be applied for clinical predictions, and present the challenges that remain to be overcome if widespread clinical adaptation is to be realized. Lastly, we discuss the most promising future applications and areas that are expected to be the focus of extensive upcoming modeling studies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Selected key tumor–immune interaction processes for consideration in model design.
Fig. 2: Overview of cancer immunotherapy modeling applications in the four key research areas examined in this Review.
Fig. 3: Conceptual design of a strategy for simplifying mathematical models for clinical application by accounting for current advances in both AI and cancer biology.

Similar content being viewed by others

References

  1. Greten, F. R. & Grivennikov, S. I. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity 51, 27–41 (2019).

    Article  Google Scholar 

  2. Vesely, M. D., Kershaw, M. H., Schreiber, R. D. & Smyth, M. J. Natural innate and adaptive immunity to cancer. Annu. Rev. Immunol. 29, 235–271 (2011).

    Article  Google Scholar 

  3. Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).

    Article  Google Scholar 

  4. Disis, M. L. Mechanism of action of immunotherapy. Semin. Oncol. 41, S3–S13 (2014).

    Article  Google Scholar 

  5. Choudhry, H. et al. Prospects of IL-2 in cancer immunotherapy. BioMed. Res. Int. 2018, 9056173 (2018).

    Article  Google Scholar 

  6. Belardelli, F., Ferrantini, M., Proietti, E. & Kirkwood, J. M. Interferon-alpha in tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 13, 119–134 (2002).

    Article  Google Scholar 

  7. Berraondo, P. et al. Cytokines in clinical cancer immunotherapy. Br. J. Cancer 120, 6–15 (2019).

    Article  Google Scholar 

  8. Rosenberg, S. A., Restifo, N. P., Yang, J. C., Morgan, R. A. & Dudley, M. E. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat. Rev. Cancer 8, 299–308 (2008).

    Article  Google Scholar 

  9. Vaddepally, R. K., Kharel, P., Pandey, R., Garje, R. & Chandra, A. B. Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence. Cancers 12, 738 (2020).

    Article  Google Scholar 

  10. Emens, L. A. & Middleton, G. The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol. Res. 3, 436–443 (2015).

    Article  Google Scholar 

  11. Wang, Y. et al. Combining immunotherapy and radiotherapy for cancer treatment: current challenges and future directions. Front. Pharmacol. 9, 185 (2018).

    Article  Google Scholar 

  12. A to Z List of Cancer Drugs (National Cancer Institute, 2021); https://www.cancer.gov/about-cancer/treatment/drugs

  13. Altrock, P. M., Liu, L. L. & Michor, F. The mathematics of cancer: integrating quantitative models. Nat. Rev. Cancer 15, 730–745 (2015).

    Article  Google Scholar 

  14. Konstorum, A., Vella, A. T., Adler, A. J. & Laubenbacher, R. C. Addressing current challenges in cancer immunotherapy with mathematical and computational modelling. J. R. Soc. Interface 14, 20170150 (2017).

    Article  Google Scholar 

  15. Malinzi, J., Basita, K. B., Padidar, S. & Adeola, H. A. Prospect for application of mathematical models in combination cancer treatments. Inform. Med. Unlocked 23, 100534 (2021).

    Article  Google Scholar 

  16. Eftimie, R., Bramson, J. L. & Earn, D. J. Interactions between the immune system and cancer: a brief review of non-spatial mathematical models. Bull. Math. Biol. 73, 2–32 (2011).

    Article  MathSciNet  MATH  Google Scholar 

  17. Lim, C. et al. Patients with advanced non-small cell lung cancer: are research biopsies a barrier to participation in clinical trials? J. Thorac. Oncol. 11, 79–84 (2016).

    Article  Google Scholar 

  18. Artzrouni, M. et al. The first international workshop on the role and impact of mathematics in medicine: a collective account. Am. J. Transl. Res 3, 492–497 (2011).

    Google Scholar 

  19. Barbolosi, D., Ciccolini, J., Lacarelle, B., Barlési, F. & André, N. Computational oncology—mathematical modelling of drug regimens for precision medicine. Nat. Rev. Clin. Oncol. 13, 242–254 (2016).

    Article  Google Scholar 

  20. Hoffmann, K. et al. Integration of mathematical model predictions into routine workflows to support clinical decision making in haematology. BMC Med Inf. Decis. Mak. 20, 28 (2020).

    Article  Google Scholar 

  21. Deisboeck, T. S., Wang, Z., Macklin, P. & Cristini, V. Multiscale cancer modeling. Annu. Rev. Biomed. Eng. 13, 127–155 (2011).

    Article  Google Scholar 

  22. Hamis, S., Powathil, G. G. & Chaplain, M. A. J. Blackboard to bedside: a mathematical modeling bottom-up approach toward personalized cancer treatments. JCO Clin. Cancer Inform. 3, 1–11 (2019).

    Article  Google Scholar 

  23. Yankeelov, T. E. et al. Multi-scale modeling in clinical oncology: opportunities and barriers to success. Ann. Biomed. Eng. 44, 2626–2641 (2016).

    Article  Google Scholar 

  24. Wang, Z., Butner, J. D., Kerketta, R., Cristini, V. & Deisboeck, T. S. Simulating cancer growth with multiscale agent-based modeling. Semin. Cancer Biol. 30, 70–78 (2015).

    Article  Google Scholar 

  25. Yin, A., Moes, D., van Hasselt, J. G. C., Swen, J. J. & Guchelaar, H. J. A review of mathematical models for tumor dynamics and treatment resistance evolution of solid tumors. CPT Pharmacomet. Syst. Pharm. 8, 720–737 (2019).

    Article  Google Scholar 

  26. Kuznetsov, M., Clairambault, J. & Volpert, V. Improving cancer treatments via dynamical biophysical models. Phys. Life Rev. 39, 1–48 (2021).

    Article  Google Scholar 

  27. Bull, J. A. & Byrne, H. M. The hallmarks of mathematical oncology. Proc. IEEE 110, 523–540 (2022).

    Article  Google Scholar 

  28. Cristini, V., Koay, E. & Wang, Z. An Introduction to Physical Oncology: How Mechanistic Mathematical Modeling Can Improve Cancer Therapy Outcomes (CRC Press, 2017).

  29. Stylianopoulos, T., Munn, L. L. & Jain, R. K. Reengineering the physical microenvironment of tumors to improve drug delivery and efficacy: from mathematical modeling to bench to bedside. Trends Cancer 4, 292–319 (2018).

    Article  Google Scholar 

  30. Ulmschneider, M. B. & Searson, P. C. Mathematical models of the steps involved in the systemic delivery of a chemotherapeutic to a solid tumor: from circulation to survival. J. Control. Release 212, 78–84 (2015).

    Article  Google Scholar 

  31. Dogra, P. et al. Mathematical modeling in cancer nanomedicine: a review. Biomed. Microdevices 21, 40 (2019).

    Article  Google Scholar 

  32. Dewhirst, M. W. & Secomb, T. W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer 17, 738–750 (2017).

    Article  Google Scholar 

  33. Kim, M., Gillies, R. J. & Rejniak, K. A. Current advances in mathematical modeling of anti-cancer drug penetration into tumor tissues. Front. Oncol. 3, 278 (2013).

    Article  Google Scholar 

  34. Sahai, N., Gogoi, M. & Ahmad, N. Mathematical Modeling and simulations for developing nanoparticle-based cancer drug delivery systems: a review. Curr. Pathobiol. Rep. 9, 1–8 (2021).

    Article  Google Scholar 

  35. Dogra, P. et al. Image-guided mathematical modeling for pharmacological evaluation of nanomaterials and monoclonal antibodies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 12, e1628 (2020).

    Article  Google Scholar 

  36. Tran, A. P. et al. Delicate balances in cancer chemotherapy: modeling immune recruitment and emergence of systemic drug resistance. Front. Immunol. 11, 1376 (2020).

    Article  Google Scholar 

  37. Mahlbacher, G. E., Reihmer, K. C. & Frieboes, H. B. Mathematical modeling of tumor-immune cell interactions. J. Theor. Biol. 469, 47–60 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  38. Metzcar, J., Wang, Y., Heiland, R. & Macklin, P. A review of cell-based computational modeling in cancer biology. JCO Clin. Cancer Inform. https://doi.org/10.1200/cci.18.00069 (2019).

  39. Wang, Z., Butner, J. D., Cristini, V. & Deisboeck, T. S. Integrated PK-PD and agent-based modeling in oncology. J. Pharmacokinet. Pharmacodyn. 42, 179–189 (2015).

    Article  Google Scholar 

  40. Pappalardo, F., Palladini, A., Pennisi, M., Castiglione, F. & Motta, S. J. M. M. N. P. Mathematical and computational models in tumor. Immunol. Math. Model Nat. Phenom. 7, 186–203 (2012).

    Article  MathSciNet  MATH  Google Scholar 

  41. Dréau, D., Stanimirov, D., Carmichael, T. & Hadzikadic, M. An agent-based model of solid tumor progression. In Bioinformatics and Computational Biology, BICoB 2009, vol. 5462, 187–198 (Springer, 2009).

  42. Chiacchio, F., Pennisi, M., Russo, G., Motta, S. & Pappalardo, F. Agent-based modeling of the immune system: NetLogo, a promising framework. BioMed. Res. Int. 2014, 907171 (2014).

    Article  Google Scholar 

  43. Gong, C. et al. A computational multiscale agent-based model for simulating spatio-temporal tumour immune response to PD1 and PDL1 inhibition. J. R. Soc. Interface 14, 20170320 (2017).

    Article  Google Scholar 

  44. Ghaffarizadeh, A., Heiland, R., Friedman, S. H., Mumenthaler, S. M. & Macklin, P. PhysiCell: an open source physics-based cell simulator for 3-D multicellular systems. PLoS Comput. Biol. 14, e1005991 (2018).

    Article  Google Scholar 

  45. Ozik, J. et al. High-throughput cancer hypothesis testing with an integrated PhysiCell-EMEWS workflow. BMC Bioinf. 19, 483 (2018).

    Article  Google Scholar 

  46. de Pillis, L. G., Radunskaya, A. E. & Wiseman, C. L. A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65, 7950–7958 (2005).

    Article  Google Scholar 

  47. dePillis, L. G., Eladdadi, A. & Radunskaya, A. E. Modeling cancer-immune responses to therapy. J. Pharmacokinet. Pharmacodyn. 41, 461–478 (2014).

    Article  Google Scholar 

  48. Stalidzans, E. et al. Mechanistic modeling and multiscale applications for precision medicine: theory and practice. Netw. Syst. Med. 3, 36–56 (2020).

    Article  Google Scholar 

  49. Stepanova, N. V. Course of the immune reaction during the development of a malignant tumour. Biophysics 24, 917–923 (1979).

    Google Scholar 

  50. Łuksza, M. et al. A neoantigen fitness model predicts tumour response to checkpoint blockade immunotherapy. Nature 551, 517–520 (2017).

    Article  Google Scholar 

  51. Serre, R. et al. Mathematical modeling of cancer immunotherapy and Its synergy with radiotherapy. Cancer Res. 76, 4931–4940 (2016).

    Article  Google Scholar 

  52. Sung, W., Hong, T. S., Poznansky, M. C., Paganetti, H. & Grassberger, C. Mathematical modeling to simulate the effect of adding radiation therapy to immunotherapy and application to hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys. 112, 1055–1062 (2022).

    Article  Google Scholar 

  53. Adhikarla, V. et al. A mathematical modeling approach for targeted radionuclide and chimeric antigen receptor T cell combination therapy. Cancers 13, 5171 (2021).

    Article  Google Scholar 

  54. Elpiniki, N., Steffen, E. E., Jana, L. G. & Yang, K. Mathematical modeling of an immune checkpoint inhibitor and its synergy with an immunostimulant. Discret. Continuous Dynamical Syst. B 26, 2133–2159 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  55. West, J. et al. The immune checkpoint kick start: optimization of neoadjuvant combination therapy using game theory. JCO Clin. Cancer Inform. 3, 1–12 (2019).

    Article  Google Scholar 

  56. Lindauer, A. et al. Translational pharmacokinetic/pharmacodynamic modeling of tumor growth inhibition supports dose-range selection of the anti-PD-1 antibody pembrolizumab. CPT Pharmacomet. Syst. Pharm. 6, 11–20 (2017).

    Article  Google Scholar 

  57. Shah, D. K. & Betts, A. M. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human. J. Pharmacokinet. Pharmacodyn. 39, 67–86 (2012).

    Article  Google Scholar 

  58. Simeoni, M. et al. Predictive pharmacokinetic–pharmacodynamic modeling of tumor growth kinetics in xenograft models after administration of anticancer agents. Cancer Res. 64, 1094–1101 (2004).

    Article  Google Scholar 

  59. Chen, X. et al. Mechanistic projection of first-in-human dose for bispecific immunomodulatory P-cadherin LP-DART: an integrated PK/PD modeling approach. Clin. Pharmacol. Ther. 100, 232–241 (2016).

    Article  Google Scholar 

  60. Reigner, B. G. & Blesch, K. S. Estimating the starting dose for entry into humans: principles and practice. Eur. J. Clin. Pharmacol. 57, 835–845 (2002).

    Article  Google Scholar 

  61. Betts, A. M. et al. The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis. J. Pharmacol. Exp. Ther. 333, 2–13 (2010).

    Article  Google Scholar 

  62. Escors, D. Tumour immunogenicity, antigen presentation and immunological barriers in cancer immunotherapy. New J. Sci. 2014, 734515 (2014).

    Article  Google Scholar 

  63. Kather, J. N. et al. High-throughput screening of combinatorial immunotherapies with patient-specific in silico models of metastatic colorectal cancer. Cancer Res. 78, 5155–5163 (2018).

    Article  Google Scholar 

  64. Gandhi, L. et al. Pembrolizumab plus chemotherapy in metastatic non-small-cell lung cancer. N. Engl. J. Med. 378, 2078–2092 (2018).

    Article  Google Scholar 

  65. Ruiz-Martinez, A. et al. Simulations of tumor growth and response to immunotherapy by coupling a spatial agent-based model with a whole-patient quantitative systems pharmacology model. PLoS Comput. Biol. 18, e1010254 (2022).

    Article  Google Scholar 

  66. Wang, H., Zhao, C., Santa-Maria, C. A., Emens, L. A. & Popel, A. S. Dynamics of tumor-associated macrophages in a quantitative systems pharmacology model of immunotherapy in triple-negative breast cancer. iScience 25, 104702 (2022).

    Article  Google Scholar 

  67. Ribba, B. et al. Prediction of the optimal dosing regimen using a mathematical model of tumor uptake for immunocytokine-based cancer immunotherapy. Clin. Cancer Res. 24, 3325–3333 (2018).

    Article  Google Scholar 

  68. Schmidt, M. M. & Wittrup, K. D. A modeling analysis of the effects of molecular size and binding affinity on tumor targeting. Mol. Cancer Ther. 8, 2861–2871 (2009).

    Article  Google Scholar 

  69. Griffiths, J. I. et al. Circulating immune cell phenotype dynamics reflect the strength of tumor-immune cell interactions in patients during immunotherapy. Proc. Natl Acad. Sci. USA 117, 16072–16082 (2020).

    Article  Google Scholar 

  70. Tsur, N. et al. Predicting response to pembrolizumab in metastatic melanoma by a new personalization algorithm. J. Transl. Med 17, 338 (2019).

    Article  Google Scholar 

  71. Tsur, N., Kogan, Y., Rehm, M. & Agur, Z. Response of patients with melanoma to immune checkpoint blockade—insights gleaned from analysis of a new mathematical mechanistic model. J. Theor. Biol. 485, 110033 (2020).

    Article  MathSciNet  MATH  Google Scholar 

  72. Butner, J. D. et al. Mathematical prediction of clinical outcomes in advanced cancer patients treated with checkpoint inhibitor immunotherapy. Sci. Adv. 6, eaay6298 (2020).

    Article  Google Scholar 

  73. Butner, J. D. et al. A mathematical model for the quantification of a patient’s sensitivity to checkpoint inhibitors and long-term tumour burden. Nat. Biomed. Eng. 5, 297–308 (2021).

    Article  Google Scholar 

  74. Tang, C. et al. Ipilimumab with stereotactic ablative radiation therapy: phase I results and immunologic correlates from peripheral T cells. Clin. Cancer Res. 23, 1388–1396 (2017).

    Article  Google Scholar 

  75. Butner, J. D. et al. Early prediction of clinical response to checkpoint inhibitor therapy in human solid tumors through mathematical modeling. eLife 10, e70130 (2021).

    Article  Google Scholar 

  76. Mueller-Schoell, A. et al. Early survival prediction framework in CD19-specific CAR-T cell immunotherapy using a quantitative systems pharmacology model. Cancers 13, 2782 (2021).

    Article  Google Scholar 

  77. Das, P. et al. Optimal control strategy for cancer remission using combinatorial therapy: a mathematical model-based approach. Chaos Solitons Fractals 145, 110789 (2021).

    Article  MathSciNet  MATH  Google Scholar 

  78. Barish, S., Ochs, M. F., Sontag, E. D. & Gevertz, J. L. Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy. Proc. Natl Acad. Sci. USA 114, e6277–e6286 (2017).

    Article  Google Scholar 

  79. Mpekris, F. et al. Normalizing tumor microenvironment with nanomedicine and metronomic therapy to improve immunotherapy. J. Control. Release 345, 190–199 (2022).

    Article  Google Scholar 

  80. Rodrigues, D. S., Mancera, P. F. A., Carvalho, T. & Gonçalves, L. F. A mathematical model for chemoimmunotherapy of chronic lymphocytic leukemia. Appl. Math. Comput. 349, 118–133 (2019).

    MathSciNet  MATH  Google Scholar 

  81. Mpekris, F. et al. Combining microenvironment normalization strategies to improve cancer immunotherapy. Proc. Natl Acad. Sci. USA 117, 3728–3737 (2020).

    Article  Google Scholar 

  82. Coletti, R., Leonardelli, L., Parolo, S. & Marchetti, L. A QSP model of prostate cancer immunotherapy to identify effective combination therapies. Sci. Rep. 10, 9063 (2020).

    Article  Google Scholar 

  83. Liu, Q., Yin, X., Languino, L. R. & Altieri, D. C. Evaluation of drug combination effect using a Bliss independence dose-response surface model. Stat. Biopharm. Res. 10, 112–122 (2018).

    Article  Google Scholar 

  84. Benchaib, M. A., Bouchnita, A., Volpert, V. & Makhoute, A. Mathematical modeling reveals that the administration of EGF can promote the elimination of lymph node metastases by PD-1/PD-L1 blockade. Front. Bioeng. Biotechnol. 7, 104 (2019).

    Article  Google Scholar 

  85. Wei, H. C., Yu, J. L. & Hsu, C. Y. Periodically pulsed immunotherapy in a mathematical model of tumor, CD4+ T cells, and antitumor cytokine interactions. Comput. Math. Methods Med. 2017, 2906282 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  86. Lai, X. & Friedman, A. How to schedule VEGF and PD-1 inhibitors in combination cancer therapy? BMC Syst. Biol. 13, 30 (2019).

    Article  Google Scholar 

  87. Pozzi, G. et al. T cell therapy against cancer: a predictive diffuse-interface mathematical model informed by pre-clinical studies. J. Theor. Biol. 547, 111172 (2022).

    Article  MathSciNet  MATH  Google Scholar 

  88. Welsh, J. et al. Abscopal effect following radiation therapy in cancer patients: a new look from the immunological point of view. J. Biomed. Phys. Eng. 10, 537–542 (2020).

    Google Scholar 

  89. Dovedi, S. J. et al. Acquired resistance to fractionated radiotherapy can be overcome by concurrent PD-L1 blockade. Cancer Res. 74, 5458–5468 (2014).

    Article  Google Scholar 

  90. Kosinsky, Y. et al. Radiation and PD-(L)1 treatment combinations: immune response and dose optimization via a predictive systems model. J. Immunother. Cancer 6, 17 (2018).

    Article  Google Scholar 

  91. Raies, A. B. & Bajic, V. B. In silico toxicology: computational methods for the prediction of chemical toxicity. Wiley Interdiscip. Rev. Comput. Mol. Sci. 6, 147–172 (2016).

    Article  Google Scholar 

  92. Butner, J. D. & Wang, Z. Predicting immune checkpoint inhibitor response with mathematical modeling. Immunotherapy 13, 1151–1155 (2021).

    Article  Google Scholar 

  93. Reticker-Flynn, N. E. & Engleman, E. G. Cancer systems immunology. eLife https://doi.org/10.7554/eLife.53839 (2020).

  94. Kiran, K. L. & Lakshminarayanan, S. Global sensitivity analysis and model-based reactive scheduling of targeted cancer immunotherapy. Bio Syst. 101, 117–126 (2010).

    Google Scholar 

  95. Dogra, P. et al. A mathematical model to predict nanomedicine pharmacokinetics and tumor delivery. Comput. Struct. Biotechnol. J. 18, 518–531 (2020).

    Article  Google Scholar 

  96. Dogra, P. et al. Translational modeling identifies synergy between nanoparticle-delivered miRNA-22 and standard-of-care drugs in triple-negative breast cancer. Pharm. Res. 39, 511–528 (2022).

    Article  Google Scholar 

  97. Shirasawa, M. et al. Prognostic impact of peripheral blood neutrophil to lymphocyte ratio in advanced-stage pulmonary large cell neuroendocrine carcinoma and its association with the immune-related tumour microenvironment. Br. J. Cancer 124, 925–932 (2021).

    Article  Google Scholar 

  98. Tanaka, R. et al. Preoperative neutrophil-to-lymphocyte ratio predicts tumor-infiltrating CD8+ T cells in biliary tract cancer. Anticancer Res. 40, 14264 (2020).

    Article  Google Scholar 

  99. Seymour, L. et al. iRECIST: guidelines for response criteria for use in trials testing immunotherapeutics. Lancet Oncol. 18, e143–e152 (2017).

    Article  Google Scholar 

  100. Jiang, P. & Liu, X. S. Big data mining yields novel insights on cancer. Nat. Genet. 47, 103–104 (2015).

    Article  Google Scholar 

  101. Olivier, M., Asmis, R., Hawkins, G. A., Howard, T. D. & Cox, L. A. The need for multi-omics biomarker signatures in precision medicine. Int. J. Mol. Sci. 20, 4781 (2019).

    Article  Google Scholar 

  102. Yu, K. H. & Snyder, M. Omics profiling in precision oncology. Mol. Cell. Proteom. 15, 2525–2536 (2016).

    Article  Google Scholar 

  103. Zhang, W., Chien, J., Yong, J. & Kuang, R. Network-based machine learning and graph theory algorithms for precision oncology. npj Precis. Oncol. 1, 25 (2017).

    Article  Google Scholar 

  104. Richter, A. N. & Khoshgoftaar, T. M. A review of statistical and machine learning methods for modeling cancer risk using structured clinical data. Artif. Intell. Med. 90, 1–14 (2018).

    Article  Google Scholar 

  105. Cuplov, V., Sicard, G., Barbolosi, D., Ciccolini, J. & Barlesi, F. Harnessing tumor immunity with chemotherapy: mathematical modeling for decision-making in combinatorial regimen with immune-oncology drugs. J. Clin. Oncol. 38, e14095–e14095 (2020).

    Article  Google Scholar 

  106. Ardila, D. et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat. Med. 25, 954–961 (2019).

    Article  Google Scholar 

  107. Esteva, A. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017).

    Article  Google Scholar 

  108. Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019).

    Article  Google Scholar 

  109. Landhuis, E. Deep learning takes on tumours. Nature 580, 551–553 (2020).

    Article  Google Scholar 

  110. Azuaje, F. Artificial intelligence for precision oncology: beyond patient stratification. npj Precis. Oncol. 3, 6 (2019).

    Article  Google Scholar 

  111. Nagy, M., Radakovich, N. & Nazha, A. Machine learning in oncology: what should clinicians know? JCO Clin. Cancer Inform. 4, 799–810 (2020).

    Article  Google Scholar 

  112. Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019).

    Article  Google Scholar 

  113. Karniadakis, G. E. et al. Physics-informed machine learning. Nat. Rev. Phys. 3, 422–440 (2021).

    Article  Google Scholar 

  114. Raissi, M., Perdikaris, P. & Karniadakis, G. E. Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  115. Wieland, F.-G., Hauber, A. L., Rosenblatt, M., Tönsing, C. & Timmer, J. On structural and practical identifiability. Curr. Opin. Syst. Biol. 25, 60–69 (2021).

    Article  Google Scholar 

  116. Okuneye, K. et al. A validated mathematical model of FGFR3-mediated tumor growth reveals pathways to harness the benefits of combination targeted therapy and immunotherapy in bladder cancer. Comput Syst. Oncol. 1, e1019 (2021).

    Google Scholar 

  117. Bekisz, S. & Geris, L. Cancer modeling: from mechanistic to data-driven approaches, and from fundamental insights to clinical applications. J. Comput. Sci. 46, 101198 (2020).

    Article  MathSciNet  Google Scholar 

  118. Clarke, M. A. & Fisher, J. Executable cancer models: successes and challenges. Nat. Rev. Cancer 20, 343–354 (2020).

    Article  Google Scholar 

  119. Roudko, V., Greenbaum, B. & Bhardwaj, N. Computational prediction and validation of tumor-associated neoantigens. Front. Immunol. 11, 27 (2020).

    Article  Google Scholar 

  120. Garner, H. & de Visser, K. E. Immune crosstalk in cancer progression and metastatic spread: a complex conversation. Nat. Rev. Immunol. 20, 483–497 (2020).

    Article  Google Scholar 

  121. Irvine, D. J. & Dane, E. L. Enhancing cancer immunotherapy with nanomedicine. Nat. Rev. Immunol. 20, 321–334 (2020).

    Article  Google Scholar 

  122. Bekker, R. A. et al. Rethinking the immunotherapy numbers game. J. Immunother. Cancer 10, e005107 (2022).

    Article  Google Scholar 

  123. ForyŚ, U., Waniewski, J. & Zhivkov, P. Anti-tumor immunity and tumor anti-immunity in a mathematical model of tumor immunotherapy. J. Biol. Syst. 14, 13–30 (2006).

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This research has been supported in part by the National Science Foundation Grant DMS-1930583 (V.C. and Z.W.), the National Institutes of Health (NIH) Grants 1R01CA253865 (V.C. and Z.W.), 1R01CA226537 (R.P., W.A., V.C. and Z.W.), 1R01CA222007 (V.C. and Z.W.), 1R01AI165372 (Z.W.), 1R01DK132104 (Z.W.) and 1R01DK133610 (Z.W.). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Z.W. conceived and coordinated this work. J.D.B. and Z.W. drafted the structure of the paper, reviewed the literature and contributed to figures. P.D., C.C., R.P,, W.A. and V.C. provided critical feedback on figures. All authors contributed to the writing and revision of the paper.

Corresponding author

Correspondence to Zhihui Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Computational Science thanks Walter Koch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Ananya Rastogi, in collaboration with the Nature Computational Science team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Butner, J.D., Dogra, P., Chung, C. et al. Mathematical modeling of cancer immunotherapy for personalized clinical translation. Nat Comput Sci 2, 785–796 (2022). https://doi.org/10.1038/s43588-022-00377-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43588-022-00377-z

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer